Смекни!
smekni.com

Расчет и проектирование приводной станции (стр. 3 из 4)

рис. 6 действующие нагрузки на промежуточный вал

Определим реакции, возникающие в подшипниках от усилий Ft2Б и Ft1т в плоскости ОУZ:

Ra1 = RB1 = ∑ Ft/2 = -2*Ft2б + Ft1т /2 = -2*0,488 + 2,328/2 = 0,676 кН;

Определим реакции, возникающие в подшипниках от усилий Fr2Б и Fr1т в плоскости ОXZ:

Ra2 = RB2 = ∑ Fr/2 = -2*Fr2б + Fr1т /2 = -2*0,204 + 0,847 /2 = 0,2195 кН;

Реакции в подшипниках от усилий:

Ra = RB = √ Ra1 ² + Ra2 ² = √0,676 ² + 0,2195 ² = 0,711 кН.


Определим радиальную нагрузку, действующую на подшипник [3]:

Р = Х*V* Ra*kσ*kт,

Где Х=1 – коэффициент радиальной нагрузки;

V=1 – коэффициент вращения;

Kσ=1,3…1,5 – коэффициент безопасности, учитывающий характер нагрузки: умеренные толчки;

Kт=1 – температурный коэффициент.

Получим:

Р = 1*1*0,711*1,4*1 = 0,995 кН;

Определим долговечность работы по формуле [3]:

р

L = а1* а2*(С/р) *10 /60*п,

где С = 10 кН – паспортная динамическая грузоподъемность;

Р = 0,995 кН – эквивалентная нагрузка;

р = 3 – для шариковых подшипников;

а1 = 1 – коэффициент надежности;

а2 = 0,75 – обобщенный коэффициент совместного влияния качества металла и условий эксплуатации;

получим:

L = 1*0,75*(10/0,995) ³*10 /60*296,3 = 42826 ч;

Необходимо соблюдение условия:


L > Lhe = Lh*μ = 18000*0,25 = 4500 ч;

42826 ч > 4500 ч.

12. Расчет промежуточного вала на прочность

Определим расстояния между сечениями вала:

а = 31 мм;

b = 38 мм;

Построим эпюры изгибающих моментов в вертикальной плоскости (рис. 7):

1. М(z) = Ra1*z, при 0 < z < a;

М(0) = Ra1*0 = 0;

М(а) = Ra1*а = 676*0,031 = 20,96 Н*м;

2. М(z) = Ra1*(а + z) + Ft2б*z, при а < z < (a + b);

М(0) = Ra1*а = 676*0,031 = 20,96 Н*м;

М(b) = Ra1*(а + b) + Ft2б*b = 676*(0,031 + 0,038) + 488*0,038 = 65,2 Н*м;

3. М(z) = Ra1*(а + b + z) + Ft2б*(b + z) - Ft1т*z, при (а + b) < z < (a + b + b);

М(0) = Ra1*(а + b) + Ft2б*b = 676*(0,031 + 0,038) + 488*0,038 = 65,2 Н*м;

М(z) = Ra1*(а + b + b) + Ft2б*(b + b) - Ft1т*b = 676*(0,031 + 0,038 + 0,038) +

+ 488*(0,038 + 0,038) - 2328*0,038 = 20,96 Н*м;

4. М(z) = RB1*z, при 0 < z < a;

М(0) = RB1*0 = 0;

М(а) = RB1*а = 676*0,031 = 20,96 Н*м;


Построим эпюры изгибающих моментов в горизонтальной плоскости (рис. 7):

1. М(y) = Ra2*y, при 0 < y < a;

М(0) = Ra2*0 = 0;

М(а) = Ra2*а = 219,5*0,031 = 6,8 Н*м;

2. М(y) = Ra2*(а + y) + Fr2б*y, при а < y < (a + b);

М(0) = Ra2*а = 219,5*0,031 = 6,8 Н*м;

М(b) = Ra2*(а + b) + Fr2б*b = 219,8*(0,031 + 0,038) + 204*0,038 = 22,9 Н*м;

3. М(y) = Ra2*(а + b + y) + Fr2б*(b + y) - Fr1т*y, при (а + b) < y < (a + b + b);

М(0) = Ra2*(а + b) + Fr2б*b = 219,8*(0,031 + 0,038) +204*0,038 = 22,9Н*м;

М(a) = Ra2*(а + b + b) + Fr2б*(b + b) - Fr1т*b = 219,5*(0,031 + 0,038 + 0,038) + 204*(0,038 + 0,038) - 847*0,038 = 6,8 Н*м;

4. М(y) = RB2*y, при 0 < y < a;

М(0) = RB2*0 = 0;

М(а) = RB2*а = 219,5*0,031 = 6,8 Н*м;

Найдем суммарный изгибающий момент:

М ∑ = √Му ² + Мz ²;

М(0) ∑ = 0;

М(а) ∑ = √М(а) 1 + М(а) 2 = √20,96 ² + 6,8 ² = 22,04 Н*м;

М(а + b)) ∑ = √М(b) 1 + М(b) 2 = √65,2 ² + 22,9 ² = 69,1 Н*м;

Максимальный изгибающий момент М ∑ = 69,1 Н*м,

Крутящий момент Т = 64,02 Н*м.

Примем, что нормальные напряжения изменяются по симметричному циклу (σа = σтах, σМ = 0), а касательные напряжения - по пульсирующему циклу (τа = τМ = 0,5*τ). Материал вала - сталь 45

(σТ = 580 МПа, σв = 850 МПа, σ-1 = (0,4…0,5) σв = (0,4…0,5)*850 =(340…425)= 400 МПа, τ-1 = (0,2…0,3) σв = (0,2…0,3)*850 = (170…255) = 200 МПа).

Опасным сечением является сечение, где находится максимальный момент на валу - М ∑ = 69,1 Н*м.

τа = τМ = 0,5*τ = 0,5*Т/0,2*d ³ = 0,5*64,02*10 ³/02*55 ³ = 0,96 МПа;

σа = М/0,1*d ³ = 69,1*10 ³/0,1*55 ³ = 4,15 МПа;

Запас прочности рассчитаем по формуле:

sσ * sτ

s =,

√ sσ ²* sτ ²

σ-1

sσ =, где

kσ* σа/εσ*β + ψσ*σT

kσ = 2,5 - эффективный коэффициент концентраций напряжений при изгибе;

εσ = 0,72 - масштабный фактор;

β = 1 - фактор шероховатости поверхности;

ψσ = 0,15 - коэффициент, корректирующий влияние постоянной цикла напряжений на сопротивление усталости;

400

sσ = = 3,94;

2,5*4,15/0,72*1 + 0,15*580

τ-1

sτ = , где

kτ* τа/ετ*β + ψτ* τМ

kτ = 1,8 - эффективный коэффициент концентраций напряжений при кручении;

ετ = 0,72 - масштабный фактор;

β = 1 - фактор шероховатости поверхности;

ψτ = 0,1 - коэффициент, корректирующий влияние постоянной цикла напряжений на сопротивление усталости;

200

sσ = = 80,1;

1,8*0,96/0,72*1 + 0,1*0,96

80,1*3,94

s = = 3,93.

√80,1 ² + 3,94 ²

условие прочности соблюдается:

s > [s] = 1,5.

Проверим статическую прочность при перегрузках:

σэкв = √σи ² + 3*τ ² < [σ], где


σи = 2*М/0,1*d ³ = 2*69,1*10 ³/0,1*55 ³ = 8,3 МПа;

τ = Т/0,2*d ³ = 64,02*10 ³/0,2*55 ³ = 1,92 МПа;

[σ] = 0,8* σT = 0,8*580 = 464 МПа;

σэкв = √8,3 ² + 3*1,92 ² = 8,94 МПа;

σэкв < [σ]

8,94 МПа < 464 МПа.

рис. 7.

14. Расчет шпонок

рис. 8. Напряжения в соединении призматической шпонкой

Для колеса тихоходной ступени с диаметром вала d = 42 мм выбираем призматическую шпонку, имеющую размеры [1 ]:

b = 12 мм;

h = 8 мм;

Длину шпонки найдем из условия прочности для призматических шпонок [2 ]:

σсм = 4*Т/h*l*d ≥ [σсм], где

Т - вращающий момент на колесе тихоходной ступени;

h - высота шпонки;

l - длина шпонки;

[σсм] = 80…150 МПа - допускаемое напряжение;

Откуда:

l = 4*Т/[σсм]*h*d = 4*242,82*10 ³/120*8*42 = 24,1 мм;

L = l + b = 24,1 + 12 = 36,1 мм;


Принимаем длину шпонки L = 45 мм.

Для колеса быстроходной ступени с диаметром вала25 мм выбираем призматическую шпонку, имеющую размеры [1 ]:

b = 8 мм;

h = 7 мм;

Длину шпонки найдем из условия прочности для призматических шпонок [2 ]:

σсм = 4*Т/h*l*d ≥ [σсм], где

Т - вращающий момент на колесе быстроходной ступени;

h - высота шпонки;

l - длина шпонки;

[σсм] = 80…150 МПа - допускаемое напряжение;

Откуда:

l = 4*Т/[σсм]*h*d = 4*32,33*10 ³/120*7*25 = 6,2 мм;

L = l + b = 6,2 + 8= 14,2 мм;

Принимаем длину шпонки L = 21 мм.

14. Обоснование выбора конструкции крышек подшипников

Размеры крышки определяются, прежде всего, размером внешнего кольца подшипника. В данном случае используются закладные крышки. Эти крышки не требуют специального крепления к корпусу резьбовыми деталями. Они удерживаются кольцевым выступом, для которого в корпусе протачивают канавку. Чтобы обеспечить сопряжение торцов выступа крышки и канавки корпуса по плоскости, на наружной цилиндрической поверхности крышки перед торцом выступа делают канавку.

15. Манжетные уплотнения

Широко применяются при смазывании подшипников жидким маслом и при окружной скорости до 20 м/с манжетные уплотнения. Манжета состоит из корпуса, изготовленного из маслобензостойкой резины, каркаса, представляющего собой стальное кольцо Г- образного сечения, и браслетной пружины. Каркас придает манжете жесткость и обеспечивает плотную посаду в корпусную деталь без дополнительного крепления. Браслетная пружина стягивает уплотняющую часть манжеты, вследствие чего образуется рабочая кромка шириной

b = 0,4…0,6 мм, плотно охватывающая поверхность вала.

Манжеты, предназначенные для работы в засоренной среде. Выполняют с дополнительной рабочей кромкой, называемой «Пыльником».

Манжету обычно устанавливают открытой стороной внутрь корпуса.

К рабочей кромке манжеты в этом случае обеспечен хороший доступ смазочного масла.

16. Смазочные устройства

При работе передач масло постепенно загрязняется продуктами износа. С течением времени оно стареет. Свойства его ухудшаются. Поэтому масло, налитое в корпус редуктора, периодически меняют. Для этой цели в корпусе предусматривают сливное отверстие, закрываемое пробкой с цилиндрической резьбой (рис. 9). Размеры пробки:

d = М16*1.5 мм;

D1 = 21,9 мм;

D2 = 25 мм;

L = 24 мм;

l = 13 мм;

b = 3 мм.

рис.9. пробка

Для наблюдения за уровнем масла в корпусе устанавливают маслоуказатели жезловые (щупы) (рис. 10). Исполнение наклонного щупа вызывает некоторые технологические трудности при формовке корпуса и сверлении наклонного отверстия, поэтому вертикальное исполнение предпочтительнее.


рис. 10. Щуп

При длительной работе в связи с нагревом масла и воздуха повышается давление внутри корпуса, что приводит к просачиванию масла через уплотнения и стыки. Чтобы избежать этого, внутреннюю полость корпуса сообщают с внешней средой путем установки отдушин в его верхних точках (рис. 11)

рис.11.

17. Конструирование корпусных деталей и крышек

Размеры корпуса определяются числом и размерами размещенных в них деталях, относительным их расположением и величиной зазора между ними. Для удобства сборки корпус выполняют разъемным. Плоскость разъема проходит через оси валов.

Зазор между колесами и стенками редуктора:

а = 10 мм;

Толщина стенки корпуса редуктора

δ = 2,6* √0,1*Т = 2,6 √0,1*240,4 = 5,75 ≥6 мм.

Принимаем δ = 6 мм.

Толщину стенки крышки корпуса δ1 = (0,9…1)* δ, где δ = 6 мм -

-толщина стенки корпуса. Толщину стенки крышки корпуса принимаем δ1 = 5 мм. Для уменьшения массы крышки боковые стенки выполняют наклонными.

Диаметр приливов, в которых располагаются подшипники, определяются:

Dп = 1,25*D + 10 мм;

рис. 12

17.1 Крепление крышки к корпусу

Для соединения крышки с корпусом используются болты с наружной шестигранной головкой (рис. 13).

Размеры элементов крышки и корпуса принимают:

d = 10 мм;

К = 2,7*d = 2,7*10 = 27 мм;

С = 0,5*К = 0,5*27 = 13,5 мм;