Смекни!
smekni.com

Определение опорных реакций фермы (стр. 2 из 5)

Числа 1-11 – соответствующие стержни, 12 -

, 13 -
, 14 -

2.1 Определение опорных реакций фермы 2

На рисунке 5 изображена ферма с опорами и действующими на неё активными силами. На рисунке пронумерованы все узлы и стержни.

Освободим ферму от опор, заменив их действие силами реакций связей

. Расчетная схема изображена на рис. 6. На ферму действуют активные силы
(
) и реакции опор. Реакция
неподвижной шарнирной опоры С неизвестна ни по модулю, ни по направлению, поэтому ее разложим на две взаимно перпендикулярные составляющие силы
. Стержень А заменим одной силой, направленной под углом
к горизонтали. Таким образом, ферма находится в равновесии под действием произвольной плоской системы сил.

Выбрав систему координат, составим уравнения равновесия сил, приложенных к ферме:

(4)

(5)

(6)

Из уравнения (6):

Преобразуем знаменатель:

Определим, при каких условиях знаменатель обращается в 0:

Следовательно, при постановке задачи следует учитывать это ограничение на угол

и задавать для него значения, далекие от
. Например,

Подставив значения активных сил и углов, найдем значение реакции опоры

.

Из уравнения (4):

Из уравнения (5):

2.2 Расчет усилий в стержнях фермы 2

2.2.1 Определение усилий в стержнях фермы аналитическим методом вырезания узлов

Для определения усилий в стержнях 1-11 вырежем узлы I-VII (см. рис. 6) и рассмотрим равновесие сил, приложенных к каждому из них. При этом необходимо учесть, что

. Составим систему уравнений для каждого узла, начиная с первого. Сумма проекций всех сил на ось Ox будет соответствовать первому уравнению для каждого узла, а сумма всех проекций на ось Oy – второму уравнению.

Узел I.

Узел II.

Узел III.

Узел IV.

Узел V.

Узел VI.

Узел VII.

Зная реакции опор, найдем усилия всех стержней.

Из уравнений I (где римская цифра означает уравнения проекций сил, действующих на соответствующий узел, на оси координат):

Из уравнений IV:

Из уравнений III:

Из уравнений VI:

Из уравнений VII:

Из уравнений VI:

Из уравнений II:

Из результатов расчетов следует, что реакции стержней 1-4, 6, 8, 9-10 имеют направления, противоположные принятым на расчетной схеме. Следовательно, эти стержни сжаты.

2.2.2 Определение усилий в стержнях фермы методом Риттера

Найдем усилия в стержнях 3, 9 и 11. Для этого рассечем данные стержни как показано на рисунке 8.

Из рисунка видно, что усилие в стержне 9 легко находится, если составить уравнение суммы моментов всех сил относительно точки D:

Усилие в стержне 3 легко находится из уравнения суммы проекций всех сил на ось Oy:

И, наконец, усилие в стержне 6 найдем из уравнения суммы проекций всех сил на ось Ox:

Сравним полученные результаты с теми, что были получены в математическом пакете MathCAD:

Числа 1-11 – соответствующие стержни, 12 -

, 13 -
, 14 -

3.1 Определение опорных реакций фермы 3

На рисунке 9 изображена ферма с опорами и действующими на неё активными силами. На рисунке пронумерованы все узлы и стержни.

Освободим ферму от опор, заменив их действие силами реакций связей

. Расчетная схема изображена на рис. 10. На ферму действуют активные силы
(
) и реакции опор. Стержень А заменим одной горизонтальной силой, стержень B заменим одной вертикальной силой, стержень С одной силой, направленной под углом
к горизонтали. Таким образом, ферма находится в равновесии под действием произвольной плоской системы сил.

Выбрав систему координат, составим уравнения равновесия сил, приложенных к ферме:

(7)

(8)