Смекни!
smekni.com

Расчет балки (стр. 1 из 2)

Задача №1.

привод крутящий момент балка

Р = 13 кН, М = 9 кН·м,

l1 = 0,9 м, l2 = 1,1 м,

α = 30°.

RA – ? NA – ? RB – ?

Решение

Составим расчетную схему балки, опоры заменим реакциями опор (рис. 1).

Рис. 1

Составим уравнение моментов относительно точки А:

ΣМ(А) = RB·sinα·l2 – M – P(l1 + l2) = 0;


Составим уравнение моментов относительно точки B:

ΣМ(B) = – RA·l2 – M – P·l1 = 0;

Проверка:

ΣFY = RB·sinα + RA – P = 0;

63,6·sin30° – 18,8 – 13 = 0;

0 = 0 – реакции найдены верно.

Составим уравнение сил по оси х:

ΣFХ = NA – RB·cosα = 0;

NA = RB·cosα = 63,6·cos30° = 55,1 кH.

Реакции опорного шарнира: RA и NA.

Сила, нагружающая стержень по модулю равна RB и направлена в противоположную сторону.

Задача №2.

М1 = 440 Н·м, М2 = 200 Н·м,

М3 = 860 Н·м, [τ]кр = 100 МПа,

Ст3, круг, кольцо d0/d = 0,7

d кр – ? d0 – ? d – ?

Решение

Для заданного бруса построим эпюру крутящих моментов (рис. 2).

Заданный брус имеет три участка нагружения.

Возьмем произвольное сечение в пределах I участка и отбросим левую часть бруса.

Рис. 2

На оставленную часть бруса действуют моменты М1 и МZI. Следовательно:

МZI = М1 = 440 Н∙м.

Взяв произвольное сечение в пределах II участка, и рассматривая равновесие оставленной части бруса получим:

МZII = М1 – M2 = 440 – 200 = 240 Н∙м.

Взяв произвольное сечение в пределах III участка, и рассматривая равновесие оставленной части бруса получим:


МZIII = М1 – M2 + M3 = 440 – 200 +860 = 1100 Н∙м.

По имеющимся данным строим эпюру крутящих моментов.

Условие прочности:

Отсюда:

Для круга:

Для кольца:

Массы брусьев.

Круг.

Кольцо.

Так как S2 < S1, то масса бруса с сечением в форме круга больше, чем с сечением в форме кольца.

Увеличим размер сечения в два раза.

Рассмотрим круг.

При увеличении размера сечения круга в 2 раза, нагрузку на брус можно увеличить в 8 раз.

Затраты материала увеличатся в 4 раза.

Аналогично получаются такие же результаты для сечения в форме кольца, так как формулы схожи.

Задача №3.

F = 21 кН, М = 13 кН·м,

l1 = 0,9 м, [δ]изг = 150 МПа,

l2 = 0,5 м, l3 = 0,7 м,

Ст3, швеллер, прямоугольник

h/b = 3

швеллер – ? h – ? b – ?

Решение

Отбросив опоры, заменим их действие на балку реакциями RA и RВ. Определим значение RA и RВ.

ΣМА(Fi) = F·l1 + M – RВ (l1 + l2 + l3) = 0;

ΣМB(Fi) = – F·(l2 +l3) + M + RA (l1 + l2 + l3) = 0;

Проверка:

ΣFi = RB + RA – F = 0;


15,2 + 5,8 – 21 = 0;

0 = 0 – реакции найдены верно.

Балка имеет три участка нагружения.

Возьмем произвольное сечение в пределах I участка:

QyI = RA = 5,8 кН

МХI = RA∙z

При z = 0; МХI(0) = 0.

При z = l1; МХI(0,9) = 5,8∙0,9 = 5,2 кН∙м.

Возьмем произвольное сечение в пределах II участка:

QyII = RA – F = 5,8 – 21 = -15,2 кН

Рис. 3

МХII = RA∙z – F (z – l1)

При z = l1 + l2; МХII(1,4) = 5,8∙1,4 – 21∙0,5 = -2,4 кН∙м.


В точке, расположенной бесконечно близко справа от точки С:

МХII’ = RA∙z – F (z – l1) + M

МХII’ (1,4) = 5,8∙1,4 – 21∙0,5 + 13 = 10,6 кН∙м.

Возьмем произвольное сечение в пределах III участка:

QyIII = RA – F = 5,8 – 21 = -15,2 кН

МХIII = RA∙z – F (z – l1) + M

В точке В: МХIII = 0.

По имеющимся данным строим эпюры поперечных сил и изгибающих моментов (рис. 3).

Условие прочности:

Отсюда:

Швеллер.

Берем швеллер №14а с WX = 77,8 см3, SX = 45,1 см3 = 4,51∙10-5 м3.

Прямоугольник.

Так как SХ < S, то масса балки с сечением в форме прямоугольника больше, чем масса балки из швеллера.

Увеличим размеры прямоугольного сечения в два раза.

- затраты материала увеличатся в два раза.

- нагрузку можно увеличить в два раза.

- затраты материала увеличатся в два раза.

- нагрузку можно увеличить в четыре раза.

Задача №4

lф = 100 мм, [τ]ср = 80 МПа,

k = 6 мм, [τ]’ср = 100 МПа.

d – ?

Решение

Найдем силу F из условия прочности швов при срезе.

I схема.

F = 0,7·[τ]’ср ·k·2·lф = 0,7·100·106·0,006·2·0,1 = 84 кН

II схема.

F = 0,7·[τ]’ср ·k·4·lф = 0,7·100·106·0,006·4·0,1 = 168 кН

Условие прочности на срез:


Определим диаметр пальца из условия прочности при срезе.

I схема.

Берем d = 37 мм.

II схема.

Берем d = 37 мм.

Задача №5.

Рдв = 4 кВт, ωдв = 158 рад/с, Z3 = 24, Z4 = 36, ωвых = 38 рад/с, ηц = 0,97, ηк = 0,95,

а = 140 мм, ψ = 0,5.

ηобщ – ? Uобщ – ? Рi – ? Mi – ?


Решение

Общий КПД привода:

ηобщ = ηц · ηк · ηм · ηп3

ηц. – КПД зубчатой цилиндрической передачи;

ηк. – КПД зубчатой конической передачи;

ηм = 0,98 – КПД муфты;

ηп = 0,98…0,99; принимаем ηп = 0,98 – КПД пары подшипников качения.

ηобщ = 0,97 · 0,95 · 0,98 · 0,983 = 0,85

Общее передаточное отношение привода:

Uобщ = ωдв / ωвых = 158 / 38 = 4,16

Передаточное отношение конической передачи:

Uк = Z4 / Z3= 36 / 24 = 1,5

Передаточное отношение цилиндрической передачи:

Uц = Uобщ / Uк = 4,16 / 1,5 = 2,77

Вал двигателя.

Рдв = 4 кВт;

ωдв = 158 рад/с;

Тдв = Рдв / ωдв = 4000 / 158 = 25,32 Н·м.


Быстроходный вал редуктора.

Р1 = Рдв · ηм · ηп = 4 · 0,98 · 0,98 = 3,84 кВт;

ω1 = ωдв = 158 рад/с;