Смекни!
smekni.com

Выбор материалов фрикционных механизмов (стр. 1 из 3)

Министерство образования Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Механико-машиностроительный факультет

Реферат

по материаловедению

Выбор материалов фрикционных механизмов

Студент гр.2045/1 Фролова Ю.Е.

Преподаватель Жукова М.А.

Санкт-Петербург

2010 г.

Оглавление

1.Введение. 3

2.Взаимосвязь эксплуатационных и физических свойств фрикционных материалов. 3

3.Основные типы фрикционных материалов. 3

4.Пути улучшения свойств фрикционных материалов. 3

Литература. 3

1.Введение

Фрикционный механизм, механизм для передачи или преобразования движения с помощью трения. К фрикционным механизмам относятся, фрикционные передачи, фрикционные муфты и тормоза, механизмы фрикционного зажима и разжима.

Надежная работа современных машин и механизмов невозможна без применения тормозных и передаточных устройств, оснащенных износостойкими тормозными, или, как принято называть, фрикционными материалами. В связи с быстрым ростом мощностей, скоростей и нагрузок различного рода механизмов требования к фрикционным материалам непрерывно повышаются. Фрикционные узлы принадлежат к наиболее важным узлам в машинах, так как они в первую очередь определяют надежность и долговечность их работы, а во многих случаях (авиация, автомобильный транспорт) и безопасность для жизни людей.

Фрикционные узлы – тормоза, муфты сцепления, предохранительные муфты, фрикционные передачи – работают по принципу использования сил трения.

Наиболее важной характеристикой фрикционных материалов является способность поглощения ими энергии движения, превращения ее в теплоту и рассеяние последней в воздухе без катастрофического износа самого материалы и разрушения узлов трения.

Фрикционные материалы должны обладать комплексом свойств, из которых основные: достаточно высокий и стабильный коэффициент трения, высокие износостойкость, теплостойкость и механическая прочность, отсутствие схватывания [10].

Фрикционные металлические пары (сталь-сталь, чугун-сталь, бронза-сталь), которые находят еще некоторое применение, характеризуются нестабильным коэффициентом трения, резко понижающимся с повышением температуры и скорости скольжения, склонностью к схватыванию при высоких температурах. При работе в масле металлические пары имеют слишком низкий коэффициент трения.

Развитие технологии порошковой металлургии позволило синтезировать фрикционные материалы нового типа, отличающиеся высокими теплостойкостью фрикционными характеристиками – коэффициентом трения износостойкостью – в самых разнообразных условиях работы фрикционных устройств.

2.Взаимосвязь эксплуатационных и физических свойств фрикционных материалов

К основным характеристикам фрикционных материалов относятся износостойкость, коэффициент трения и его стабильность в работе. Именно эти свойства, которые в дальнейшем для краткости будут называться служебными, определяют эффективность работы узла трения как конструкции, осуществляющей тормозные функции или функции передаточного устройства.

Служебные свойства материала, в свою очередь, определяются целым комплексом других характеристик, таких как физико-механические (прочность, твердость, усталость, модуль упругости) и теплофизические (термостойкость, термоусталость, устойчивость против тепловых ударов, жаростойкость и др.), которые, правда, в отдельности не определяют однозначно работу материала в условиях эксплуатации [10]. Однако их изменение в определенных пределах позволяет влиять на фрикционные и износные свойства в желаемом направлении.

В настоящее время свойства фрикционных материалов подразделяются на следующие:

· физико-механические и теплофизические, определяемые в статике (модуль упругости, пределы прочности при сжатии, изгибе и растяжении, твердость, теплопроводность, теплоемкость, коэффициент линейного расширения)

· физико-механические и теплофизические, определяемые в динамически условиях при повышенных и переменных температурах, меняющихся нагрузках и скоростях, приближающихся к условиям эксплуатации материалы (фрикционные теплостойкость, термоусталость – устойчивость против тепловых ударов, усталостная прочность)

· фрикционные (коэффициент трения, его стабильность, износостойкость), определяемые на образцах и моделях фрикционных изделий на лабораторных испытательных установках, стендах и в натурных условиях работы фрикционных пар.

Фрикционный материал должен обладать каким-то минимумом механической прочности и пластичности. Обеспечивающими отсутствие катастрофической деформации и разрушения под влиянием приложенных к нему механических нагрузок.

3.Основные типы фрикционных материалов

3.1.Классификация фрикционных материалов по применению

Основными типами фрикционных материалов, предназначенных для тормозных и передаточных устройств, являются материалы на железной и медной основах. У этих материалов основным металлическим компонентом, связующим и придающим материалу конструктивную прочность, являются соответственно железо и медь. Материалы на железной основе обычно применяются для тяжелых и самых тяжелых условий работы и, как правило, используются в условиях сухого трения. Материалы на медной основе предназначены для работы в более легких условиях и применяются как в условиях сухого трения, так и при работе с жидкостной смазкой.

Находят также широкое применение материалы, у которых связующей основой являются каучук, смолы и наполнители – порошки металлических и неметаллических составляющих. При получении этих материалов для предварительной подготовки веществ, входящих в наполнитель, также применяются методы порошковой металлургии [10].

Можно дать следующую классификацию областей применения фрикционных материалов:

· передаточные устройства, работающие всухую, - слабонагруженные (сельскохозяйственные тракторы, металлорежущие станки, контрольные системы в самолетах, дорожные тракторы), средненагруженные (чеканочные и штамповочные прессы, промышленный транспорт)

· тормоза для работы в условиях сухого трения – средненагруженный (автоматические, штамповочные и чеканочные прессы), тяжелонагруженные (самолеты)

· сцепления, работающие в масле, - средненагруженные (легкие автоматические трансмиссии, металлорежущие станки, сцепления управления тракторов), тяжелонагруженные (силовые трансмиссии в тракторах)

· тормоза, работающие с жидкой смазкой, - средне - и тяжелонагруженные (грузовики для работы в сельской местности).

Основное различие между сцеплением и тормозом состоит в длительности передачи энергии: сцепление работает около 1 сек, а тормоз – 1-30 сек.

Составы фрикционных материалов изменяются в широких пределах в зависимости от условий применения.

3.2 Материалы для работы в условиях сухого трения

Выбор материала (на железной или бронзовой основах) для применения в тех или иных узлах (дисковые тормоза, муфты сцепления автомобилей, фрикционные узлы различных приборов, реже – для колодочных и ленточных тормозов некоторых передающих устройств) определяется технической и экономической целесообразностью не только производства фрикционных деталей, но и эксплуатации узла трения в целом.

В Советском Союзе из материалов на железной основе наибольшее распространение получили материалы ФМК-8, ФМК-11, МКВ-50А и СМК. Материал ФМК-8 был предназначен для работы в тяжелонагруженных колесных дисковых тормозах, обладающих большой энергоемкостью. Затем был разработан материал ФМК-11, превосходящий ФМК-8 по величине и стабильности коэффициента трения, но обладающий меньшей износостойкостью [6].

Новый фрикционный материал для тяжелонагруженных дисковых тормозов – МКВ-50А, из которого в настоящее время изготавливаются накладки для дисковых тормозов ответственного назначения различных размеров. Этот материал отличается относительно высокой стабильностью механических свойств при температуре 600ºС. По величине и стабильности коэффициента трения и по износостойкости этот материал имеет преимущества перед материалами ФМК-8 и ФМК-11.

Еще более высокие показатели фрикционных свойств достигнуты в последнее время у материалов на основе железа типа СМК. Эти материалы отличаются повышенным содержанием марганца, присутствием карбида и нитрида бора, карбида кремния и дисульфида молибдена.

Материалы на основе железа и его сплавов, предназначенные для тяжелых условий работы, как правило, не содержат в себе окислов кремния и алюминия. С целью повышения коэффициента трения в этом случае вводятся тугоплавкие соединения типа карбидов, силицидов, нитридов. Они также характеризуются обязательным присутствием 10-25% меди.

По-видимому, неблагоприятное влияние двуокиси кремния объяснятся тем, что при температуре около 1165-1170ºС она легко образует с окислами железа и других металлов стеклообразные соединения – силикаты [9] , а такие температуры быстро достигаются в тонких поверхностных слоях в процессе торможения.

Материалы на основе оловянистой бронзы благодаря своей высокой износостойкости и достаточно высокому коэффициенту трения хорошо зарекомендовали себя в тормозных и передаточных устройствах различного назначения. По сравнению с материалами на основе железа они значительно меньше истирают сопряженную деталь, изготовленную из чугуна или стали.

Материалы на бронзовой основе применяются даже для изготовления авиационных тормозных дисков [10]. В этом случае олово, входящее в состав обычных материалов этого типа, иногда заменяется титаном, ванадием, кремнием или мышьяком для предотвращения межкристаллитной коррозии, которую оно может вызвать, проникая при высоких температурах между границами зерен несущей подкладки.