Смекни!
smekni.com

Экстракция и реэкстракция урана (стр. 7 из 13)

Кроме руд с относительно высоким (

0,4%) содержанием урана (
), имеются фосфатные руды, содержащие
0,02%
. На заводе фирмы "International Minerals and Chemical Corporation" получаемая фосфорная кислота содержит ~30%
и 0,1-0,2 г/л
, а также фтор, железо, алюминий и кальций с общей концентрацией ≈ 15 г/л. Анионо - и катионообменные смолы оказались не эффективными: в 1 л насыщенной смолы содержится лишь 0,1-0,2 г
.

Температура исходной фосфорной кислоты, поступающей в узел извлечения урана ~ 66 °С.

После охлаждения раствор, содержащий гипсовый осадок, контактируют с железным скрапом в барабанах из нержавеющей стали. При этом окисное железо переводится в закисную форму. Величина ЭДС после составляет 0,0 мВ. Так как в процессе экстракции разделение фаз происходит медленно и имеется тенденция к эмульгированию, применяют центрифугирование.

При использовании для экстракции 5% -ного раствора алкилпирофосфата насыщение

достигает 1 г/л. Алкилпирофосфат получают на месте из алифатического спирта, содержащего 8-10 атомов углерода, и пентоксида фосфора. Отношение потоков В/О = 10. Уран извлекают и осаждают одноступенчатой реэкстракцией 12% -ным раствором плавиковой кислоты.

Продукт отделяют от органического раствора центрифугированием. Конечный сырой тетрафторид урана содержит ~50%

. Экстрагент разлагается быстро - со скоростью ~1/3 за цикл. На скорость разложения влияет время, температура, а также тип и концентрация фосфорной кислоты.

Поэтому для заводов такого типа требуется очень тщательный подбор оборудования, чтобы единовременные вложения экстрагента были как можно меньшими. Схема процесса представлена на рис.1.1.21

Рис.1.1.21Схема извлечения урана из фосфорной кислоты, разработанная "International Minerals and Chemical Corp. ": A - исходная фосфорная кислота, Б - восстановление железа, В - экстракционный смеситель, Г - центрифуга для разделения фаз, Д - смеситель для реэкстракции и осаждения, Е - центрифуга для разделения фаз после реэкстракции, Ж - экстрагент, И - фильтрация, К - плоская сушилка с мешалкой, Л - добавление экстрагента, М - переработка фосфорной кислоты

Рассмотрено использование синергетной смеси ди (октилфенил) фосфорной кислоты (ДОФФК) и дибутилбутилфосфоната (ДББФ) для экстракции урана (VI) из раствора фосфорной кислоты. Моно (октилфенил) фосфорная кислота эффективна только для экстракции урана (IV). Добавка ДОФФК и ТБФ улучшает экстракцию и разделение фаз.

Показано, что при использовании смеси ДОФФК и ДББФ-коэффициент экстракции уменьшается с увеличением концентрации фосфорной кислоты. Даже при концентрации фосфорной кислоты 5,8 М коэффициент экстракции составляет 1,5, если органический раствор 0,2 М ДОФФК + 0,1 М ДББФ в керосине контактируют с раствором, содержащим

концентрации 0,43 г/л при В/О = 1. Алюминий, ванадий, редкоземельные элементы и фторид в исходном растворе конкурируют с ураном и уменьшают его коэффициент экстракции. Уран из органического раствора, содержащего
концентрации 0,3 г/л, реэкстрагируют раствором 2,5 М
+ 4М
при О/В = 4.

В последние несколько лет разработаны два процесса, которые Можно использовать для извлечения урана из фосфорной кислоты, получаемой мокрым методом. Эти процессы состоят из двух стадий. На первой стадии уран концентрируется от 180 мг/л до 12 г/л. В первом процессе синергетный эффект достигается применением смеси Д2ЭГФК и ТОФО, которая экстрагирует шестивалентный уран. Во втором процессе смесь моно - и диоктилфенил-фосфорной кислот экстрагирует четырехвалентный уран. Получаемый раствор фосфата урана перерабатывается на следующей стадии с использованием той же смеси экстрагентов. Оба метода были успешно опробованы на лабораторной установке. Процесс Д2ЭГФК-ТОФО рассмотрен ниже и иллюстрируется на рис.1.1.22

Рис.1.1.22. Извлечение урана из фосфорной кислоты, полученной мокрым способом: Э - экстракция, РЭ - реэкстракция, Р - рафинат, ПУ - на производство удобрений. О/с - окисление, В - восстановление, Пр - прокаливание, П - промывка, Вщ - на выщелачивание

Кислота в мокром процессе содержит 5-6 М фосфата 0 2 - 3,5 г/л Fe, 3-6 г/л

, 2-4 г/л Са, 19-33 г/л SO42--30 г/л F и 0,06-0,19 г/л U. (До 30% урана, по-видимому, не растворяются и остаются в гипсовом остатке). Перед экстракцией уран окисляют хлоратом натрия, либо воздухом или кислородом, пропускаемыми при 60-70 °С. Фосфорную кислоту, хранящуюся уже 2-3 недели, перерабатывать легче, чем только что полученную. Ее очищают от гумусового вещества, которое может давать "бороду", - путем коагуляции поверхностно-активными веществами с последующей фильтрацией.

В первом цикле 96% урана экстрагируются в четырех ступенях при В/О = 2 из охлажденного раствора и 40-45 °С смесью 0,5 М Д2ЭГФК + 0,125 М ТОФО в алифатическом разбавителе. Экстрагент насыщается до концентрации урана 0,33 г/л. При трехступенчатой реэкстракции фосфорной кислотой, содержащей закисное железо (20-25 г/л) уран в органическом растворе восстанавливается и переходит в менее экстрагируемое состояние. В результате уран переходит в водную фазу при концентрации 11,8 г/л. Во втором цикле урановый раствор окисляют NaClO3 или кислородом, затем производят трехступенчатую экстракцию органическим раствором, 0,3 М Д2ЭГФК + 0,075 М ТОФО. Извлекается 99% урана и достигается насыщение при содержании U, равном 9 г/л; РО41-8 и Fe 0,13 г/л. Фосфорную кислоту удаляют из органического раствора двухступенчатой водной промывкой, однако при этом не удаляется железо. Уран извлекают из органического раствора двухступенчатой реэкстракцией 2-3 М карбонатом аммония. При этом образуется осадок уранилтрикарбо-ната аммония. Фильтрат возвращают на реэкстракцию, а продукт прокаливают при 600 °С в течение 2 ч до

. Продукт содержит 97,5%
, 0,5% Fe, 0,06% РО4 и 0,5% СО3.

Фирма "Westighouse" планирует сооружение завода годовой производительностью около 225 т окиси урана. В качестве экстрагента будет использована смесь Д2ЭГФК-ТОФО.

Существующие методы извлечения урана основаны на выщелачивании серной, азотной кислотами или щелочно-карбонатными растворами. Неразложившийся пирит сбрасывается в хвосты. С хвостами сбрасывается также значительное количество радия. При последующем окислении сульфидов образуется серная кислота. Полагают, что в результате длительного выщелачивания радий может растворяться, этим частично и объясняется его появление в дождевой и дренажной воде. Образование кислоты в хвостохранилищах приводит также к загрязнению водных систем другими радионуклидами и металлами (железом, торием и радием). В будущем уран и торий должны извлекаться из руды полностью. Это необходимо, чтобы в хвостах не возникали радионуклиды семейства тория. Сейчас максимально допустимая концентрация в воде 226Ra составляет 10, 210РЬ - 100 и 230Th - 2000 пКu/л. В будущем эти радионуклиды необходимо переводить в растворимое состояние, концентрировать в процессе переработки руд и выделять для последующего безопасного удаления. В настоящее время для этого нет подходящей технологии, но работа, проведенная в 1977 г. в CANMET, показала, что хлоридный метод сулит значительные преимущества по сравнению с другими способами извлечения ценных компонентов. При этом технологическая схема может обеспечить соблюдение требований охраны окружающей среды. Требуется направить усилия на разработку конкретных схем и процессов переработки конкретных руд. Значительное внимание привлекает вопрос о применении процессов ионообменного извлечения из пульп ("смола в пульпе") и экстракции из пульп. Процессы сорбции из пульп применяются на заводах США, но не применяются в Канаде. Однако в последние годы разработаны методы непрерывной сорбции на ионообменных смолах, и переработка пульп должна представляться теперь технологически более привлекательной. Заслуживает серьезного рассмотрения и процесс экстракции из пульп. Фирмой "Eldorado Nuclear" показана возможность эффективного извлечения урана третичными аминами из пульпы, содержащей 35% твердого, в пульсационных колоннах диаметром 254 мм с ситчатыми тарелками. Потери экстрагента при экстракции из пульпы в пульсационной колонне оказались очень небольшими (~50 г на 1 т сухого исходного вещества), что меньше потерь при экстракции из раствора. В последующей работе "Canadian Mines Branch" было сделано сопоставление ионообменного и экстракционного извлечения из растворов и пульп.