Такие элементы как никель, медь, мышьяк, подобно железу и фосфору, почти целиком восстанавливаются в печи и переходят в чугун.
Ванадий и хром восстанавливаются аналогично марганцу соответственно на 70-80 и на 80-90 %, а титан - аналогично кремнию. Степень восстановления титана ниже, чем кремния. Алюминий, магний и кальций в доменной печи не восстанавливаются.
Особо следует отметить поведение цинка. Он содержится в некоторых железных рудах, а также попадает в доменные печи в составе добавляемых в шихту железосодержащих отходов - конвертерных шламов, колошников и пыли и др. поступая в печь в основном в виде ZnO, он легко восстанавливается при температурах > 950 0С: ZnO + С = Zn + СО и, испаряясь, поднимается с газами вверх. В зонах с умеренными температурами Zn вновь окисляется до ZnO, реагируя с CO2 и оксидами железа. Часть ZnO (10-30%) уносится из печи доменным газом; часть в смеси с сажистым углеродом осаждается на стенках печи, образуя большие настыли; часть осаждается в швах и порах футеровки, вызывая увеличение ее объема и возможность разрыва кожуха печи; часть осаждается на кусках шихты, и опускается вниз, где вновь восстанавливается, создавая циркуляцию цинка в печи, способствуя его накоплению с увеличением вредных отложений.
4. Образование чугуна
Восстанавливаемое во всем объеме печи железо получается в твердом виде, поскольку температура его расплавления (1535 0С) выше температур, имеющихся в доменной печи; при этом восстановленное из твердых кусков шихты железо получается в виде твердой губки. В условиях избытка углерода и СО губчатое железо растворяет углерод (науглероживается). Этот процесс получает заметное развитие уже при температурах 400-600 0С и заключается в том, что на поверхности губчатого железа, являющегося катализатором, происходит распад СО (2СО = С +СО2) и выделяющийся сажистый углерод переходит в железо, образуя раствор Ре + С = [С].
По мере науглероживания температура плавления железа понижается (так температура плавления железа, содержащего 4,3 % С равна 1130 ОС), а само оно опускается в зоны с более высокими температурами. В определенный момент, когда температура плавления науглероженного железа становится равной температуре в печи, железо плавится (примерно при содержании углерода 2-2,5 % и температуре около1200 ОС) и образуются капли жидкого металла, которые стекают в горн между кусками кокса. В жидком виде железо науглероживается еще более интенсивно - при контакте капель с раскаленным коксом и при контакте расплава с коксом в горне, происходит растворение углерода кокса в металле.
В движущиеся капли металла и отчасти в еще твердое железо в небольших количествах переходят на разных горизонтах печи другие восстановленные элементы (кремний, марганец, фосфор и в некоторых случаях ванадий, мышьяк, хром, никель, медь), а также сера. Этот сплав железа с углеродом и другими элементами (чугун) скапливается в горне.
Таким образом, формирование чугуна из твердого восстановленного железа заключается в его науглероживании, расплавлении и растворении в нем других восстановленных элементов (обычно это марганец, кремний, фосфор и сера).
Окончательное содержание углерода в чугуне устанавливается в горне; оно не поддается регулированию и зависит от температуры чугуна и его состава.
Марганец и хром, как карбидообразующие элементы, способствуют повышению содержания углерода в чугуне.
Кремний, фосфор и сера образуют с железом силициды, фосфиды и сульфиды, которые, являясь более прочными соединениями, чем карбид железа, разрушают его, способствуя тем самым снижению содержания углерода в чугуне. Увеличение температуры чугуна вызывает повышение содержания углерода в нем. Применительно к современной доменной плавке примерное содержание углерода в чугуне (%) можно определить по следующей формуле:
С = 4,8 + 0,03Мо - 0,27Si - 0,32Р - 0,032S.
В передельных чугунах содержание углерода обычно составляет 4,4-4,8 %, в литейном 3,5-4 %, в ферромарганце- 7 %. Температура чугуна в горне равна 1400-1500 ОС.
5. Образование шлака и его свойства
Помимо чугуна, в доменной печи образуется шлак, в который переходят не восстановившиеся оксиды элементов, т.е. СаО, MgO, АI2О3, Si02 и небольшое количество МnО и FеО, причем СаО специально добавляют к железорудной шихте для получения жидкого шлака.
Наведение в печи жидкого текучего шлака необходимо прежде всего для выведения из печи составляющих пустой породы железных руд, вносимых агломератом и окатышами, а также золы кокса. Основу пустой породы большинства руд так же, как и основу золы кокса, составляют Si02 и А12О3, температура плавления которых (соответственно 1710 и 2050 0С) выше температур в доменной печи, в связи с чем они в печи расплавиться не могут. Поскольку доменная печь не приспособлена для удаления твердых продуктов плавки, необходимо перевести оксид Si02 и А12О3 в жидкую фазу, что достигается добавкой в шихту агломерации флюса известняка, вносящего оксид СаО, который, взаимодействуя с Si02 и А12О3, образует легкоплавкие химические соединения. Последние при температурах доменного процесса расплавляются, переводя пустую породу и золу кокса в жидкую фазу - шлак, который периодически выпускают через летки, освобождая печь от непрерывно поступающих сверху невосстанавливаемых оксидов. Другой важной функцией, шлака является десульфурация.
5.1. Образование шлака.
Основными стадиями сложного процесса шлакообразования в доменной печи являются: нагрев и размягчение железосодержащей части шихты, ее плавление, стекание в горн первичного шлака с изменением его состава, присоединение к нему золы кокса, формирование окончательного состава в горне.
При опускании в печи шихтовых материалов сохраняется их слоевое расположение (чередование слоев агломерата и кокса), и материалы остаются твердыми до поступления в участки печи с температурами около 1000.-1100 0С, где начинается пластичная зона.
В верхних наружных слоях этой зоны происходит размягчение и переход в пластичное состояние железосодержащих материалов со слипанием отдельных кусков в : скопления; в толще зоны, где температура выше, начинается и протекает плавление, а ниже нее(где температуры составляют около 1200-1250 0С) оксидная фаза и восстановленное железо находятся в расплавленном состоянии и твердым остается лишь кокс. Эта зона пластичности или зона первичного шлакообразования может быть разной по форме и толщине и располагаться на разной высоте в зависимости от распределения шихтовых материалов и газового потока по сечению печи, расхода кокса и теплового состояния горна и печи, расхода дутья, состава и прочности агломерата и его восстановимости и ряда других факторов.
Формирующаяся ниже зоны пластичности жидкая оксидная фаза - расплавленные пустая порода агломерата и окатышей и не восстановившиеся оксиды FeO и МnО - образует первичный шлак. По составу он отличается от конечного шлака в горне, в первую очередь более высоким содержанием FеО (до5-15 %) и МnО. Первичный шлак каплями стекает в горн через слой кокса ("коксовую осадку"), при этом изменяется его состав. В результате прямого восстановления железа и марганца в шлаке уменьшается содержание FеО и МnО, и он становится более тугоплавким. На горизонте фурм к шлаку присоединяется зола кокса (в основном SiO2 и Аl2О3), Придвижении капель (особенно в горне) в шлак переходит сера. В районе горна в результате восстановления кремния несколько уменьшается количество SiO2в шлаке.
Конечный шлак на 85-95 % состоит из SiO2, Аl2О3 и СаО и содержит, %: 38-42 SiO2, 38-48 СаО, 6-20 Аl2О3, 2-12 MgO, 0-26 РеО, 1-2 МnО и 0,6-2,5 серы (в основном в виде CaS). Температура шлака несколько выше температуры чугуна и составляет 1400-1560 0C.
Состав шлака, его физические свойства, основность и количество оказывают существенное влияние на ход доменной плавки и показатели работы печи.
Поскольку содержание AI2O3 в доменных шлаках не превышает 20 %, практический интерес представляет часть диаграммы, примыкающая к стороне CaO-SiО2 треугольника. Как видно из диаграммы, наиболее высокие температуры плавления у чистых оксидов (СаО и Si02), наиболее приемлемые (низкие) у шлаков, содержащих около 42-65 % СаО.
Однако для выбора состава шлака недостаточно знать эти температуры, так как некоторые из сплавов становятся хорошо подвижными при температуре, значительно превышающей температуру плавления. Например, самый легкоплавкий сплав - СаО AI2O3 . 2Si02, содержащий примерно 62 % Si02, 14 % Al2O3 и 24 % СаО, температура плавления которого равна 1170 0C, приобретает хорошую текучесть лишь при нагреве до 1600 0C. Поэтому необходимо учитывать данные о вязкости шлаков.
Вязкость - это внутреннее трение, препятствующее течению жидкости; она является величиной, обратной текучести. Единицей вязкости является Па*с (1 Па*с = 1 Н *с/м2 = 1 пуаз), Т.е. за единицу вязкости 1 Па*с принимают вязкость такой жидкости, в которой сила в 1 Н, приложенная к площади жидкости в 1 м2
(т.е. 1 Па), находящейся на расстоянии 1 м от другой такой же площади, вызывает перемещение жидкости со скоростью 1 м/с. Вязкость существенно понижается с ростом температуры.
Для нормальной работы доменных печей вязкость шлака должна составлять 0,3-0,6 Па*с.
Основность шлаков является их важной технологической характеристикой. Ее выражают величиной отношения содержания основных оксидов в шлаке к содержанию кислотных: CaO/Si02.