Министерство топлива и энергетики Российской федерации
Управление учебных заведений
ТОМЬ-УСИНСКИЙ ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ
КУРСОАЯ РАБОТА
по специальности______1005_____________
______________________________________
Тема_________ГРЭС-1500 МВт__________
____________________________________________________________________________
Разработал________________
Руководитель к.т.н доцент Крохин Г.Д___________
Консультанты: к.т.н доцент Крохин Г.Д._________
к.т.н доцент Пучков В.С.__________
Нестеренко Г.В__________________
Консультант-контролер Ляшенко Т.М.___________
Шифр З-1390
2000
Содержание пояснительной записки
1. Введение
2. Составление расчетной тепловой схемы электростанции. Краткая характеристика турбины.
3. Расчет тепловой схемы на номинальном режиме
4. Определение показателей экономичности электростанции при номинальном режиме для ГРЭС.
5. Определение максимального часового расхода условного топлива.
6. Выбор типа, единичной мощности и количества устанавливаемых котлов.
7.Выбор схемы топливного хозяйства ГРЭС на основном топливе.
8. выбор схемы оборудования ГРЭС.
8.1 Регенеративных подогревателей.
8.2 Деаэраторов.
8.3 Питательных насосов.
9. Выбор схемы главных паропроводов. Определение типоразмеров паропроводов.
10. Выбор схемы главных трубопроводов. Определение диаметров трубопроводов.
11. Определение потребности ГРЭС в технической воде, выбор циркуляционных насосов.
12. Выбор оборудования конденсационной установки.
13. Выбор тягодутьевых установок и дымовой трубы.
14. Выбор системы золоудаления и золоулавливания.
15. Выбор схемы водоподготовки.
16. Перечень средств автоматизации технологической защиты турбины.
17. Описание компоновки основного оборудования главного здания электростанции.
18.Мероприятия по охране труда и пожарной профилактике .
19.Мероприятия по охране окружающей среды.
20. Экономическая часть проекта:
21.Список используемой литературы.
1. Введение. Краткая характеристика ГРЭС.
Дипломный проект выполнен по теме «Проект тепловой части ГРЭС с подробной разработкой турбинного отделения котлотурбинного цеха.
Разрабатываемая станция установленной мощностью 1500 МВт, расположена в городе Красноярске .
Источник водоснабжения прямоточная система с питанием из реки Енисей.
Потребителем мощности является единая электрическая сеть России.
На станции установлено три энергоблока с турбинами К-500-240.
Установленное годовое число часов использования установленной мощности 6800 часов.
Вид топлива – Экибастузский каменный уголь марки СС.
2. Составление расчетной тепловой схемы электростанции.
Турбина К-500-240-2
Одновальная паровая конденсационная турбина К-500-240-2 номинальной мощностью 500 МВт состоит из однопоточных цилиндров высокого и среднего давления и двух двухпоточных цилиндров низкого давления (рис. 1,1). Турбина предназначена для
=540°С, после промперегрева: р=3,81 МПа (38,8 кгс/см²), =540°С, давление в конденсаторах 3,9 кПа. Частота вращения роторов 50 с-², направление вращения – по часовой стрелке, если смотреть со стороны переднего подшипника турбины в сторону генератора.
Турбоустановка К-500-240-2 снабжена развитой системой регенеративного подогрева питательной воды и всережимными питательными насосами с конденсационными турбинными приводами. Кроме отборов на регенерацию, обеспечивается отпуск пара на теплофикационную установку, состоящую из двух подогревателей сетевой воды, на подогрев воздуха, подаваемого в котел, а также на подогрев добавка в цикл химически обессоленной воды, подаваемой в конденсаторы.
Краткая характеристика тепловой схемы
Тепловая схема ГРЭС устанавливает взаимосвязь основных агрегатов и аппаратов электростанции, при помощи которых осуществляются выработка электрической энергии.
Проектируемая тепловая схема предусматривает установку парогенератора с турбоустановкой К-500-240-2 ХТГЗ.
Парогенератор вырабатывает перегретый пар дня турбины, который поступает в турбину сначала в часть высокого давления; отработав в ЦВД, пар подается промперегреватель парогенератора, после чего подается в часть среднего давления ЦСД. Пар отработавший в ЦСД по двум парам ресиверов направляется в цилиндры низкого давления. Далее пар выходит на подогрев питательной воды в регенеративные подогреватели Из ЧСД и ЧНД пар поступает на девять нерегулируемых отборов (регенеративные подогреватели) низкого давления, ПВД и в деаэратор. Конденсат из подогревателей обычно большей частью сливается в предыдущий подогреватель с более низкой температурой, низким давлением (каскадный слив).
Поступающая в парогенератор вода не должна содержать газов (О2 и СО2), могущих вызвать коррозию. Газы из воды удаляются как правило в термических деаэраторах, обогреваемых паром. Для этой цели в схеме установлены деаэратора с деаэрационными колонками ДСП-800, , они включены параллельно, и осуществляют нагрев конденсата до 164,2°С при давлении 0,7 МПа, установлены на высоте 28 м для подпора питательного насоса. Деаэратор является одновременно ступенью нерегулируемого подогрева питательной воды. Из деаэратора питательная вода подается питательными насосами в. регенеративные подогреватели расположенные после питательного насоса, которые называются подогревателями высокого давления.
Конденсат турбины, подаваемый насосами через ПНД в охладитель эжектора, отсасывает воздух из конденсата (которому требуется вода как можно низкой температуры), а затем в охладитель выпоров из уплотнений турбины. Суммарный подогрев конденсата в этих подогревателях бывает до 70°С.
Для резервирования отборов турбины или для получения пара других параметров, а также для осуществления оперативного пуска и остановки турбины и котла, установлены редукционно-охладительные установки РОУ, в которых достигается необходимое снижение давления и температуры пара.
3.Расчет тепловой схемы при нормальном режиме.
Исходные данные:
Прототип: турбина К-500-240-2
Начальные параметры пара и питательной воды: Р0 = 24 мПа, t0=555ºC, t пит. в 265ºС.
Давление пром. перегрева Рпп = 3,7 мПа. Температура пром. перегрева tпп = 555ºC
Конечное давление Р2=Рк= 0,0035 мПа.
Удельный объем конденсата после конденсатора Vк=39,48 .
Температура конденсата на выходе из конденсатора tк = 26,692ºC.
КПД цилиндра высокого давления hoi цвд=0,93
КПД цилиндра низкого и среднего давления hoi цсд и цнд = 0,95
КПД генератора hген=0,998, электомеханический КПД hмех=0,992
Проточная часть по отборам
№ | Р. мПа | tºC | D т/ч |
1 | 5,85 | 336 | 100 |
2 | 4,15 | 294 | 147,05 |
3 | 1,75 | 432 | 77 |
4 | 1,13 | 374 | 34,4 |
5 | 0,53 | 286 | 46,4 |
6 | 0,3 | 223 | 44,4 |
7 | 0,158 | 169 | 34 |
8 | 0,084 | 113 | 7,1+5,8 |
9 | 0,0165 | 56 | 28,8 |
1.1 Построение ориентировочного рабочего процесса турбины.
С учетом заданного значения КПД hoi цвд, цсд и цнд, строим hs диаграмму процесса расширения пара в проточной части. Для упрощения расчетов, пренебрегаем потерями в промперегреве, и на выхлопе турбины.
Порядок построения ориентировочного рабочего процесса в турбине, следующий:
1) По заданному давлению Р0 и температуре t0, по давлению и температуре промперегрева, Рпп и tпп, по давлению в конденсаторе Рк, с учетом значения КПД.
2) По известным Ро, Рпп, Рк, hoi, определятся значение энтальпии для каждой из этих точек.
ho=3365, h2t=1865, hпп=3580,
Определяем тепловой перепад проточной части турбины.
Н0ад= h0-h2t=3365-1865=1500 кжд/кг
3) Внутренний тепловой перепад турбины равен:
Hi= hoi цвд*hoi цсд+цнд*H0ад=1500*0,93*0,95= =1325,25 кДж/кг
Оцениваем предварительно теплоперепад через первую регулирующую ступень h0рс=100 кДж/кг.
Выбираем одновенечную регулирующую ступень.
II Определение ориентировочного расхода пара.
1) Расход пара на турбину по предварительно заданному КПД .(без учета утечек пара через концевые уплотнения)
D= Nрэ*10³ = 500000 = Н0т´hoi´hген´hмех 1500´0,88´0,992´0,998= 382,6 кг/с; 1377 т/ч
где hoi – относительный внутренний КПД турбоустановки
равный hoi=hцвд´hцсд+цнд 0,88
Расчет подогревателей.
1) Выбираем схему подогрева воды с включением смешивающего подогревателя – деаэратора, и схему перекачки дренажа подогревателей. Распределим регенеративный подогрев с использованием пара из отборов турбины. Для этого определяем три базовых точки:
а) в конденсаторе tк = f(Рк`) = 26,692ºС;
б) в деаэраторе tд = f(Pд) = f(7 бар) = 164,17;
в) за последним по ходу воды подогревателем t п.в. = 265ºС ;
2) В каждом подогревателе низкого давления (пнд) вода должна подогреваться на 20-30ºС, в деаэраторе на 15-30ºС, в подогревателе высокого давления (пвд) на 30-40ºС. Равномерно распределим подогрев конденсата между пнд1 и деаэратором, приняв подогрев в основном эжекторе и охладителе пароуплотнения равной 5ºС , температуру насыщения в деаэраторе tд.нас = 16,8 получим:
tк = t эж + t п.в. = 26,69 + 23,2 = 31,69ºС
tпнд1 = 31,69 + 23,2 = 54,9 ºС
tпнд2 = 54,9 + 23,2 = 78,1ºС
tпнд3 = 78,1 + 23,2 = 101,3ºС
tпнд4 = 101,3 + 23,2 = 124,5ºС
tпнд5 = 124,5 + 23,2 = 147,4ºС
деаэратор = tпнд5+ tд.нас = 147,4+16,8 =164,2ºС
2) Определяем повышение температуры в пвд.