Смекни!
smekni.com

Воздействие сталеплавильного производства на окружающую среду (стр. 2 из 5)

Рис. 4. Схема охлаждения и мокрой очистки отходящих га­зов двухванных печей: 1 — двухванная печь; 2 — шла-ковики; 3 — шиберы: 4 — горел­ки для дожигания СО,; 5 — вен­тилятор для подачи воздуха; в — дымовая труба; 7 — дрос­сельный клапан; 8 — дымососы; 9 — скруббер Вентури; 10 — ко­тел-утилизатор

В случае отключения котла-утилизатора газы с температу­рой 700—800 и даже 900 °С подаются прямо в трубы Вентури. Эффективность работы газоочистки при этом не снижается.

4. Неорганизованные выбросы и борьба с ними

Помимо выбросов через дымовые трубы, газы, загрязненные пылью и вредными газообразными компонентами, выделяются внутрь цеха через завалочные окна печей, от разливочных ков­шей и другого оборудования. Выбросы от мартеновских печей садкой 500—900 т приближенно могут быть оценены следую­щими цифрами, м3/ч, в межпродувочный период 3000—5000; в период кислородной продувки 6000—12 000. В результате этих выбросов воздух в цехе оказывается весьма загрязненным. Концентрации пыли и СО составляют соответственно 4—10 и 0,01—0,03 мг/м3.

Валовые выбросы оксида углерода на основных участках сталеплавильного цеха составляют, кг/т чугуна (стали):

Cистем принудительной вентиляции в сталеплавильных це­хах обычно нет. Вентиляция цеха осуществляется посредством аэрации, загрязненные выбросы выходят в атмосферу через аэрационные фонари.

Борьба с выбросами газов через окна печей ведется в двух направлениях: отвод выбивающихся газов с помощью аспирационных систем и создание воздушных завес на окнах. Аспирационные системы занимают много места, дороги в эксплуа­тации и мешают при проведении ремонта печи. Поэтому более перспективно второе направление. Из сопел диаметром 12— 15 мм, размещенных с шагом 65 мм, вытекают со скоростью 80—120 м/с струи воздуха, перекрывающие площадь рам. При оптимальном разрежении под сводом 35—45 Па полное устра­нение пылегазовых выбросов достигается при расходах сжатого воздуха около 2,6 тыс. м3/ч на каждое открытое и около 1,3 тыс. м3/ч на каждое закрытое окно. При этом количество поступающих в тракт газов увеличивается на 5—7 %

5.ОЧИСТКА КОНВЕРТОРНЫХ ГАЗОВ

Запыленность конверторных газов в сильной степе­ни зависит от показателей кислородной продувки, а так­же от схемы подачи и качества (гранулометрического состава, влажности) извести и других сыпучих, вводи­мых в конвертор против потока газов и уносимых последним; содержание пыли в газе достигает 250 г/м3Многочисленные замеры показывают, что повышение ин- тенсивности кислородной продувки не дает существен­ного повышения запыленности газов; на некоторых установках суммарный вынос пыли даже уменьшается (в процентах к массе садки). При этом вследствие ин­тенсификации всегда возрастает количество пыли, про­носимой газами в единицу времени, через Газоотводящий тракт, в результате чего возрастает нагрузка на газоочистную установку.

Способ отвода газов от конверторов (с доступом или без доступа воздуха в газовый поток), а также способ охлаждения газов (поверхностный или впрыскиваемой водой) определяют количество и состав газов и их продуктов сгорания, входящих в газоочистительный аппарат, %также гранулометрический состав пыли, со­держание пыли на 1 м3 газов, степень насыщения вла­гой, состав газов.

Газоочистная установка должна обеспечивать очистку газов от пыли до санитарных норм при любом спо­собе отвода и охлаждения газов. Санитарные нормы запыленности газов, выбрасываемых в атмосферу, из го­да в год ужесточаются. Содержание пыли в газах, вы­брасываемых в атмосферу, не должно превышать 100 мг/м3 (в среднем за период кислородной продувки). В ближайшие годы следует ожидать, что с ростом ин­тенсивности работы основных технологических агрегатов металлургических предприятий величина остаточной запыленности будет снижена, по крайней мере, до 80 мг/м3.

Изложенные условия определяют величину коэффи­циента улавливания пыли в системах газоочистки, т. е. по мере снижения допустимой остаточной запыленности должен повышаться коэффициент улавливания пыли в газоочистке.

(В табл. 1 приведены примерные величины запыленности газов перед газоочисткой в зависимости от способа отвода газов при их поверхностном охлаждении и коэффициенты улавливания, которые должны быть обес­печены системой газоочистки.

Таблица1. Качество газов, входящих в систему газоочистки, и коэффициенты улавливания аппаратов.

Показатели Способ отвода конверторных газов
Полное сжигание

Недожег

Частичное сжигание

Без дожигания

Количество пыли перед газоочисткой,
25 - 60 35 - 70 50 - 125 150 – 250

Доля частиц, %, размером мкм:4040-3030-2020-1010

20

13

39

16

12

-

-

-

-

-

-

-

-

-

-

31

12

29

20

6

Коэффициенты улавливания пыли, %, при остаточной запыленности,
15010080

99,5

99,6

99,7

99,6

99,7

99,75

99,7

99,8

99,85

99,8

99,85

99,9

Коэффициент улавливания определяли, как отноше­ние массы уловленной пыли к массе пыли, вносимой в газоочистку.

Запыленность газов, их состав, требуемая степень очистки в аппаратах указывают, что при переходе от системы отвода с полным сжиганием газов к системам без дожигания запыленность газа, входящего в газо­очистку, возрастает. В то же время при верхней кисло­родной продувке пыль более крупная, легче отделяется,при донном дутье — более мелкая, и ее отделение ус­ложняется.

Все многочисленные способы очистки газов можно разделить на две основные группы: мокрую и сухую очистку. Для мокрой очистки используют скрубберы, различной конструкции, дезинтеграторы, трубы Вентури (именуемые также трубами-распылителями) различных модификаций, размеров и конструкций. К этому же классу относят и мокрые электрофильтры.

Принципиально для всех аппаратов мокрой очистки характерны смачивание газа и следовательно, находящейся в нем пыли, коагулирование частиц пыли и уда­ление их из потока газов. Поэтому в аппаратах мокрой очистки устанавливают, как правило, сепараторы, влаго-отделители, циклоны или ловушки различных конст­рукций, назначение которых улавливать выносимые из основного потока смоченные и скоагулированные части­цы пыли. Неотъемлемой частью мокрых газоочисток является водное хозяйство. Весьма часто качество очист­ки определяется не собственно конструкцией аппаратов, а качеством воды (содержанием твердых частиц, водо­родным показателем и др.), поступающей на газоочист­ку. По соображениям охраны окружающей среды не до­пускаются работа мокрых очисток по разомкнутому циклу, и даже эпизодический сброс воды из оборотных циклов в водоемы.

Для аппаратов сухой очистки характерно удаление пыли без смачивания, например коагуляция частиц в электрофильтрах вследствие зарядки их частиц в элек­трическом поле в результате адсорбции ионов поверх­ностью частиц в поле коронного разряда, в активной зоне рукавных фильтров за счет статического электри­чества, а на самой ткани в результате автофильтрации.

Один и тот же газоочистной аппарат работает на разных предприятиях даже за одинаковыми технологи­­­ческими агрегатами, в разных условиях: различны запыленность газа, состав, температура и др. Результаты расчета аппаратов очистки газа большей частью не под­­тверждаются достигаемыми на практике результатами. Поэтому наиболее правильным подходом при опреде­лении габаритов и выборе типа аппаратов для очистки газов от пыли является аналогия с действующей или моделирование на экспериментальной установке с вне­сением коррективов, основанных на опыте ее эксплуа­тации, особенностях технологии и новых исследова­ниях.

Многочисленные технико-экономические расчеты по­казывают, что в принципе нельзя отдать предпочтение сухой электростатической или мокрой очистке газа. Вместе с тем следует отметить, что в отдель­ных конкретных условиях в зависимости от эксплуата­ционных показателей (заработной платы, стоимости электроэнергии, наличия водных ресурсов, возможности использования шлама, стоимости оборудования), а также способа отвода и охлаждения газов может оказаться целесообразным применять либо мокрый, либо сухой способ очистки газов.