Смекни!
smekni.com

Воздействие сталеплавильного производства на окружающую среду (стр. 1 из 5)

Содержание

СОДЕРЖАНИЕ 1

1Характеристика отходящих газов и пыли МАртеновскиих печей 2

2Обеспыливание отходящих газов мартеновских печеЙ 3

3 Очистка отходящих газов двухванных печей 4

4Неорганизованные выбросы и Борьба с ними 5

6.ОЧИСТКА КОНВЕРТОРНЫХ ГАЗОВ 6

7.МОКРАЯ ГАЗООЧИСТКА ОТХОДЯЩИХ КОНВЕРТОРНЫХ ГАЗОВ 8

8.СУХАЯ ГАЗООЧИСТКА ОТХОДЯЩИХ КОНВЕРТОРНЫХ ГАЗОВ 13

9.ЧЕЛОВЕК И ОКРУЖАЮЩАЯ СРЕДА 16

10. ЛИТЕРАТУРА 18

1

1. Характеристика отходящих газов и пыли

Количество, состав и параметры дымовых газов.

В мартеновских цехах производится более 50 % всей выпускае­мой стали.

В марте­новской печи дымовые газы образуются в результате сгорания топлива, нагрева и разложения сыпучих материалов и окисле­ния углерода шихты (углекислый газ и оксид углерода).

Ниже приведено максимально возможное количество про­дуктов сгорания, поступающих на газоочистку при ра­боте на природном газе :

Садка печи, т . . 100 200 300 400 500 600 900 Vmax.тыс- м3/4 • 68 80 90 101 112 125 161

Как показывают промышленные исследования, на современ­ных мартеновских печах количество продуктов сгорания перед газоочисткой из-за присосов по газовому тракту оказывается в 1,8—2,0 раза больше количества газов, образующихся в печи. Для печей, работающих с подачей мазута (20—50 % по теплу), количество продуктов сгорания увеличивается на 5%. Вследствие увеличения присосов к концу кампании объем уходящих газов увеличивается на 10—15%.

Температура газов после регенераторов — в среднем 600— 700 °С, в период заливки чугуна на короткое время она повы­шается до 700—800 °С.

Средний состав уходящих продуктов сгорания печей, рабо­тающих на дутье, обогащенном кислородом, % (объемн.)-10,5—15,1 СО2; 16—16,5 Н2О; 62,3—66,1 N2; 6,5—7,1 О2; следы SO2.

Пылевынос и физико-химические свойства пыли. Уходящие газы мартеновских печей содержат большое количество пыли, выделение которой по ходу плавки (рис.1, а) неравномерно. Максимальное пылевыделение наблюдается в период плавле­ния при продувке ванны кислородом.

В начальный период плавки пыль крупная, она состоит из частиц руды, известняка и некоторых других компонентов. Пылеобразование связано с растрескиванием шихты при на­греве, а также с угаром оплавляемого металла.

большое количество мелкодисперсной пыли (размер частиц <1 мкм). Большинство исследователей считают, что основной причиной образования пыли (бурого дыма) является испарение металла в зонах высокой температуры с последую­щим окислением и конденсацией в атмосфере печи. С увеличе­нием удельного расхода (интенсивности продувки) кислорода количество выделяющейся пыли резко увеличивается (рис.1, б). Ниже приведен удельный вынос пыли при подаче в ванну кислорода:

Расход кислоро­да, м3/(т-ч) ... О 5 10 15 Выбросы, кг/т . . 2,4 7,2 16,7

Интенсивность пылевыделения существенно снижается с рассредоточением подачи кислорода. Оптимальными считают шестисопловые фурмы с наклоном сопел 20—30° по отношению к горизонту.

Для снижения температуры в зоне продувки в струю кисло­рода иногда добавляют топливо (природный газ или мазут),сыпучие материалы (железорудный концентрат или известь) или просто воду. При этом выбросы пыли заметно сокраща­ются (на 20—30 %)

Основную часть пыли составляют оксиды железа, количе­ство которых достигает 65—92%. Примерный состав марте­новской пыли перед газоочисткой при работе печи с

продувкой кислородом, %: 92,7 Fe2O3; 0,9 А12О3; 1,65 СаО; 0,9 MgO; 1,1 МnО; 0,8 SiO2.

Дисперсный состав пыли во многом зависит от интенсивно­сти продувки ванны и для средних условий может быть выра­жен следующими цифрами:

Размер частиц, мкм . <1 1—5 >5
Содержание, % . . 6034 6

Обработка этих данных показывает, что dm = 0,8 мкм;

Пыль, уносимая из печи, в значительной степени оседает по газовому тракту: 50—60 % в шлаковике, 15—20 % в регенера­торах, 10—15% в котле-утилизаторе. Таким образом, запылен­ность газа после котла-утилизатора (перед газоочисткой) со­ставляет 10—15 % содержания пыли в газах, выходящих из печи. При расчетах запыленность газа можно принимать сле­дующей,

:

Без кислородной продувки .... 3—5/0,4—0,7
С кислородной продувкой 25—30/3—6

Примечание.В числителе — на выходе из печи, в знаменателе — перед газо­очисткой.

Удельное электрическое сопротивление пыли составляет107—1010 Ом-см2.

В уходящих газах мартеновских печей, кроме пыли, содер­жатся вредные газообразные компоненты: 30—50 мг/м3 окси­дов серы и 200—400 мг/м3 оксидов азота.

Из отходящих газов мартеновских печей газообразные ком­поненты в настоящее время не улавливаются.

2. Обеспыливание отходящих газов мартеновских печей

Практически за всеми крупными мартеновскими печами уста­новлены котлы-утилизаторы, в которых за счет выработки во­дяного пара температура отходящих газов снижается с 600— 700 до 220—250 °С. Котлы-утилизаторы мартеновских печей типизированы и изготовляются в серийном порядке котлостроительными заводами.

Для очистки отходящих газов мартеновских печей как в бывшем СССР, так и за рубежом применяют в основном установки двух типов: сухой очистки в электрофильтрах и мокрой очи­стки в скрубберах Вентури (рис.2). Эффективность обоих аппаратов приблизительно одинакова: и в том, и в другом слу­чае можно снизить концентрацию пыли в отходящих газах до 100 мг/м3, что соответствует санитарным требованиям.

Наиболее подходят для очистки мартеновских газов элек­трофильтры типа ЭГА, обеспечивающие при скорости газов 1-5 м/с

Примечание.В числителе— очистка газов в скрубберах Вентури (с учетом стоимости водного хозяйства), в знаменателе — очистка газов в электрофильтрах. При скорости 1,2 м/с степень очистки 98—99 %. Примерно такую же степень очистки могут дать прямоугольные трубы Вентури с регули­руемой горловиной, работающие со скоростью газов в горло­вине 100—120 м/с и удельным расходом воды 1 —1,2 дм33. Технико-экономическое сравнение обоих вариантов для печей различной емкости дает следующие результаты (табл.1). Результаты технико-экономического анализа показывают, что очистка газов в электрофиль- трах дешевле, чем в скруббе­рах Вентури: суммарные удельные затраты уменьшаются по мере увеличения емкости печи, причем в варианте с электрофильтрами более быстрыми темпами.Стоимость газоочи­стки составляет в среднем около 20—25 % общей стоимости цеха.

Таким образом, в современных условиях для очистки отхо­дящих газов мартеновских печей следует рекомендовать элек­трофильтры типа ЭГА. Только в тех случаях, когда электро­фильтр из-за отсутствия места установить невозможно, следует применять скрубберы Вентури, из которых наиболее подходя­щими являются трубы Вентури с регулируемым сечением прямо­угольной горловины, снабженные каплеуловителями с завихрителем.

3. Очистка отходящих газов двухванных печей

На ряде металлургических предприятий мартеновские печи ре­конструированы в двухванные, которые работают значительно интенсивнее. Количество отходящих газов из рабочего про­странства холодной камеры равно 50 000—60 000 м3/ч, их тем­пература 1400—1500 °С. В отходящих газах содержится, %: 4—11 СО2; 0,2—0,8 СО; 8—17 О2. При неполном сгорании со­держание СО увеличивается до 10 % и выше.

Запыленность отходящих газов 15—25 г/м3. Пыль, содержа­щаяся в газах, имеет следующий химический состав, %: 86,4 Fe2O3; 2,61 FeO; 5,9 SiO2; 1,94 А12О3; 2,26 CaO; 2,16 MgO; 0,47 MnO; 1,7 S.

Ниже приведен дисперсный состав пыли, замеренный при расходе 6000—6500 м3/ч кислорода на продувку ванны:

Размер частиц, мкм. <1 1—3 3—10 >10 Содержание, % (по массе) 35 37 21 7

Высокая температура отходящих газов требует применения для их охлаждения котлов-утилизаторов радиационно-конвективного типа (серии РК). Такие котлы-утилизаторы разрабо­таны Центроэнергочерметом, однако до настоящего времени в серийном порядке не изготовляются. Вследствие этого ох­лаждение отходящих газов двухванных печей перед очисткой приходится осуществлять нерациональными способами — впры­скиванием воды или разбавлением воздухом. Используют и котлы-утилизаторы серии КУ, предназначенные для мартенов­ских печей.

В СССР имелся опыт эксплуатации за двухванными пе­чами сухой и мокрой систем газоочистки. При сухой схеме газоочистки (рис.3) дымовые газы, выходящие из холодной камеры двухванной печи с температурой 1400—1500 °С, по вертикальному каналу поступают в шлаковик, где охлажда­ются впрыскиванием воды до 900—1000 °С. Дальнейшее ох­лаждение газов до 700 °С, предусматривающее также дожига­ние оксида углерода, осуществляют подсосом холодного воз­духа в общий боров через специальные люки. Далее по футерованному шамотным кирпичом газоходу газы отводят или в котел-утилизатор типа КУ (рис.3 а), или в форсуночный скруббер полного испарения, частично футерованный огнеупор-

охлаждаются до 200 °С и увлажняются до состояния насыщения. После скруббера установлен электрофильтр типа ЭГА с игольчатыми коронирующими и С-образными осадительными электродами. Надежным и устойчивым является режим работы при следую­щих параметрах:

В пределах данного режима газоочистка за двухванной печью работоспособна и эффективна.

На одном из предприятий Юга страны за двухванной печью работает мокрая газоочистка со скрубберами Вентури. На этой установке газы также охлаждаются до 900—1000 °С в шлако­вике впрыскиванием воды. В борове газы охлаждаются до 700 °С путем разбавления их воздухом, подаваемым вентиля­тором через специальное сопло диаметром 700 мм, установлен­ное на входе в боров. Одновременно происходит дожигание оксида углерода, для чего в борове размещены специальные горелки.

Охлажденные до 700—800 °С газы направляются в серийный котел-ути­лизатор типа КУ-80 (рис.4), после чего с температурой 220—250 °С они поступают на газоочистку. Система газоочистки включает 10 параллельно работающих труб Вентури круглого сечедаия с диаметром горловины 250 мм, изготовленных из стали Х18Н10Т, устойчивой к воздействию высоких температур и агрессивных сред. После труб Вентури газы по­ступают в каплеуловители, а затем дымососами ВМ-100/1200 выбрасыва­ются в дымовую трубу. При скоростях газа в горловине труб Вентури в пре­делах 115—125 м/с и удельном рас­ходе воды 1—1,2 дм33 газоочистка работает со степенью очистки более 99 % при расходе кислорода на про­дувку 4000—6000.