Смекни!
smekni.com

Підвищення ефективності експлуатації свердел під час обробки композиційних матеріалів (стр. 1 из 3)

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет «Львівська політехніка»

Кафедра «Технології машинобудування»

Реферат

Дисципліна: Наукові дослідження

”ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ЕКСПЛУАТАЦІЇ СВЕРДЕЛ ПІД ЧАС ОБРОБКИ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ”

Львів – 2008р.


Зміст

Вступ.

1 Огляд літературних джерел. Аналіз геометричних параметрів ріжучої частини спіральних свердел з перехідними ріжучими крайками

2 Результати аналізу геометричних параметрів ріжучої частини спірального свердла із підрізаючими ріжучими крайками

3Опис експериментальних досліджень процесів формоутворення задніх поверхонь свердел різних конструкцій

4 Результати експериментального дослідження зусиль різання і шорсткості обробленої поверхні під час свердління свердлами з підрізаючими ріжучими крайками

Висновки

Література

Вступ

Розвиток машинобудування на порозі третього тисячоліття ставить нові складніші питання до технології механічної обробки і, у тому числі, до інструментів, від характеристик яких залежить надійність та економічність роботи інструмента за умов високих швидкостей, навантажень, температур, хімічної взаємодії з оброблюваним матеріалом, а також високих вимог до геометрії обробки та якості оброблених поверхонь.

Постійно зростаюча потреба різних галузей промисловості в освоєнні нової техніки, яка має високі експлуатаційні характеристики, зумовила широке застосування різних полімерних і метало-полімерних композиційних матеріалів, особливо в аерокосмічній галузі машинобудування.

Серед різних полімерних композиційних матеріалів, таких як скло-, органо- і вуглепластики, склопластики знайшли найбільш широке застосування. Вони мають питому міцність у 5...6 разів більшу за алюміній. Гібридні матеріали на основі скляних волокон з добавками вуглецевих і борних волокон дають змогу значно підвищити твердість, модуль пружності та втомлювальну міцність. Тому ці матеріали тепер широко використовуються в сучасних конструкціях літаків і дають змогу досягти зниження маси планера на 20...25%, а космічних апаратів – до 40%.

Процеси механічної обробки композиційних матеріалів значно відрізняються від процесів обробки традиційних матеріалів. Тому композити відносять до групи важкооброблюваних матеріалів. Широке впровадження цих матеріалів стримується низькою оброблюваністю різанням, невисокою стійкістю інструмента і труднощами одержання якісної поверхні.

Найбільш розповсюдженою і трудомісткою операцією при механічній обробці конструкційних матеріалів, яка складає близько 50%, є операція свердління. При її виконанні необхідно забезпечити точність отвору в межах 11...12 квалітету і необхідні параметри шорсткості обробленої поверхні, виключивши відколи та спучування на вході і виході свердла з отвору.

Суттєво підвищити якість обробки можна за рахунок використання свердел спеціальної конструкції з підрізаючими ріжучими крайками. Однак, відомі конструкції спіральних свердел з підрізаючими ріжучими крайками застосовують в практиці обмежено. Це, значною мірою, пояснюється тим, що не було розроблено ефективних технологічних способів заточування таких інструментів, які дозволили б у широких межах змінювати величини геометричних параметрів ріжучої частини свердла.

Існуючі свердла для обробки композиційних матеріалів за своєю конструкцією і технологічністю не завжди задовольняють користувачів як за продуктивністю, так і за якістю обробки. Тому задача створення ефективних і простих за конструкцією інструментів, які задовольняли б як за стійкістю, так і за якістю обробки КМ при свердлінні, актуальна.


1 Огляд літературних джерел. Аналіз геометричних параметрів ріжучої частини спіральних свердел з перехідними ріжучими крайками

Аналіз літературних даних показав, що композиційні матеріали все більш поширюються в машинобудуванні. Однією з трудомістких і частіше застосовуваних операцій у машинобудуванні є свердління. Розглянуто вимоги, висунуті до операції свердління і конструкції використовуваних спіральних свердел. На основі проведеного аналізу визначено та обґрунтовано шляхи поліпшення конструктивних параметрів спіральних свердел і їх експлуатації під час обробки композиційних матеріалів, що дозволило сформувати мету і завдання дослідження.

Вектор нормалі

до задньої площини
, що примикає до центральної ріжучої крайки, дорівнює:

,

де

– вектор, що йде по центральній ріжучій крайці;

– вектор, що йде по лінії перетинання задніх площин із площиною, перпендикулярною до осі свердла.

Вектор нормалі

до задньої площини
, що примикає до перехідної ріжучої крайки, дорівнюватиме:

,

де `

– вектор, що йде по перехідній ріжучій крайці.

Кут e між площинами

і
дорівнює куту між нормалями
і
:


,

де qII – інструментальний задній кут, вимірюваний у площині, перпендикулярній до осі свердла.

Знаючи положення задніх площин, проаналізовані нові способи їх одночасного заточування. Було аналітично визначено кути установки універсально-заточувальної голівки під час заточування свердла. Методику визначення положення свердла відносно шліфувального круга було прийнято таку:

– поворотом голівки навколо осі В вектор

встановлюємо паралельно до напрямку зворотно-поступальних рухів столу універсально-заточувального верстата;

– поворотом навколо осі Б встановлюємо вектор нормалі

паралельно до осі шліфувального круга.

Кути установки універсально-заточувальної голівки дорівнюють:

qБ = (90°r0); qВ = – (90°qII);

де tgr0 = tgj0 cosqII.

Кут повороту qА приймається таким, що дорівнює нулю.

Методику визначення кутів установки голівки під час заточування за схемою:

– поворотом навколо осі В вектор

встановлюємо паралельно напрямку зворотно-поступальних рухів столу верстата;

– поворотом навколо осі Б встановлюємо вектор нормалі

у вертикальне положення.

Кути установки універсально-заточувальної голівки дорівнюватимуть:

qБ = r0, qВ = – (90°–qII).

2 Результати аналізу геометричних параметрів ріжучої частини спірального свердла із підрізаючими ріжучими крайками

Вектор нормалі

до задньої площини
підрізаючої ріжучої крайки дорівнює:

,

де

– вектор, що йде по підрізаючій ріжучій крайці;

– вектор, що йде по задній поверхні в нормальному до підрізаючої ріжучої крайки перерізі.

Вектор нормалі

до задньої площини
дорівнює:

,

де

– вектор, що йде по центральній ріжучій крайці;

– вектор, що йде по задній поверхні
у нормальному до центральної ріжучої крайки перерізі.

Кут e між площинами

і
дорівнює куту між нормалями
і