Смекни!
smekni.com

Проектирование насоса для циркуляции масла (стр. 5 из 18)

- окружная скорость шнека на наружном диаметре;

.

Максимальная относительная скорость жидкости на входе в шнек:

Чтобы обеспечить длительный ресурс работы шнека (

), необходимо иметь:

,

где

- пороговая скорость жидкости для данного материала шнека.

Для выполнения этого условия при столь высокой относительной скорости жидкости (

), необходимо изготовить шнек из Стали 45.

2. Определяем пороговую скорость жидкости по эмпирической формуле:

,

Для Стали 45 временное сопротивление

,

- опытный коэффициент для лопастных насосов,

Плотность масла трансформаторного при температуре

.

Пороговая скорость жидкости для шнека:

.

Имеем:

.

Условие отсутствия кавитационной эрозии выполняется.

3. Определяем максимальную относительную скорость жидкости на входе в центробежное колесо.

.

Для точки С входной кромки лопасти колеса, наиболее удаленной от оси вращения, имеем:

,

где

- расход жидкости через колесо.

- площадь нормального сечения меридианного потока, проведенного через точку С с учетом стеснения.

, здесь:

- площадь нормального сечения, проведенного через точку С без учета стеснения.

,

мм – расстояние от точки С до оси колеса.

мм.

По опытным данным:

Получим:

Окружная скорость лопасти колеса в рассматриваемой точке :

,

где

- диаметр, на котором расположена точка С.

Окружная составляющая абсолютной скорости жидкости в точке С.

,

где

.

Максимальная относительная скорость жидкости на входе в колесо:

.

Центробежное колесо выполняем из стали марки 20, для которой временное сопротивление

.

4. Определяем пороговую скорость жидкости для центробежного колеса

.

Имеем:

Условие отсутствия кавитационной эрозии центробежного колеса выполняется.

Таким образом, спроектированная ступень насоса удовлетворяет условиям длительной работы.

2.5 Расчет осевых и радиальных сил, действующих на ротор насоса, выбор способов их разгрузки

В общем случае на ротор насоса действуют осевые и радиальные силы.

Определение осевых сил, действующих на ротор колеса.

1. Осевая сила, возникающая от разности давлений по обе сторонылопастного колеса.


где:

а)

- потенциальный напор,

;

б)

- радиус уплотнения колеса.

,

- принимаем

в)

- плотность бензина авиационного при температуре
.

Получим:

Осевая сила

направлена навстречу потоку, поступающему в лопастное колесо.

2. Осевая сила, возникающая от динамических реакций потока в лопастном колесе.

,

где:

- угол между осью колеса и меридианной составляющей абсолютной скорости жидкости на выходе из колеса (для проектируемого колеса
).

- относительная составляющая абсолютной скорости жидкости на входе (
).

- меридианная составляющая абсолютной скорости на входе в колесо.

Имеем:

,

Осевая сила

направлена по потоку, поступающему в лопастное колесо.

3. Суммарная осевая сила, действующая на лопастное колесо насоса.

Суммарная осевая сила, действующая на лопастное колесо насоса, направлена на встречу потоку, поступающему в лопастное колесо.

4. Разгрузка осевой силы лопастного насоса.

Осевые силы в центробежных насосах достигают больших значений, поэтому принимают меры по их снижению. В одноступенчатых насосах для уравновешивания осевой силы используют рабочие колеса с двусторонним подводом жидкости; симметричные уплотнения по обеим сторонам рабочего колеса, выполненные на одном диаметре; ребра (импеллеры) на наружной стороне основного диска колеса.

В данном насосе разгрузка осевых сил осуществляется при помощи импеллеров. Этот способ разгрузки осевых сил приводит к снижению давлений на наружной стороне диска. Ребра выполняют открытыми, закрытыми или комбинированными. В первом и третьем случаях они радиальные, во втором могут быть профилированными.

В данной работе применяются импеллеры радиальные открытого типа. Принимаем конструктивно (исходя из размеров лопастного колеса): число импеллеров – 6, а их высота – 6 мм. При установке открытых ребер суммарная осевая сила уменьшается на величину:

,

где:

и
- минимальный и максимальный радиусы ребер соответственно, принимаем:
;
.

и
- скорости вращения импеллера на минимальном и максимальном радиусах соответственно:

;

.

В итоге получим:

Неуравновешенная сила воспринимается упорным подшипником, и она равна:

Определение радиальных сил, действующих на ротор насоса.

1. Определение веса колеса.

Для того, чтобы определить вес колеса разобьем его на 6 частей и найдём объём материала:

а) Определение объема втулки колеса: