Смекни!
smekni.com

Расчет параметров посадки и калибров для проверки отверстия и вала (стр. 4 из 5)

2. С помощью правила «трех сигм» проверяем наличие или отсутствие промахов.

Таким образом, ни один из результатов не выходит за границы интервала

, следовательно, с вероятностью 0,9973 гипотеза об отсутствии грубых погрешностей принимается.

3. Построение гистограммы и выдвижение гипотезы о виде закона распределения вероятности.

Для того чтобы построить гистограмму, необходимо результаты отдельных измерений расположить в так называемый вариационный ряд по возрастанию их численных значений.

Участок оси абсцисс, на котором располагается вариационный ряд значений физической величины, разбивается на k одинаковых интервалов

. При выборе числа интервалов следует придерживаться следующих рекомендаций:
Число измерений «n» Число интервалов «k»
40-100 7-9
100-500 8-12
500-1000 10-16
1000-10000 12-22

Тогда:

Начало первого интервала выбирается таким образом, чтобы это значение оказалось меньше, чем минимальный результат вариационного ряда. Последний интервал должен покрывать максимальное значение ряда. Выберем начало первого интервала в точке 29,87, тогда конец последнего (9-го) интервала окажется в точке 30,5.

Затем для каждого интервала подсчитывается количество результатов mi, попавших в данный интервал и определяется

Если в интервал попадает меньше пяти наблюдений, то такие интервалы объединяют с соседними, соответственно изменяется и параметр

.

начало окончание кол-во совпадений mi

- первый интервал составляет 29,87 до 29,94 6

- второй интервал составляет 29,94 до 30,01 9

- третий интервал составляет 30,01 до 30,08 8

- четвертый интервал составляет 30,08 до 30,15 22

- пятый интервал составляет 30,15 до 30,22 17

- шестой интервал составляет 30,22 до 30,29 12

- седьмой интервал составляет 30,29 до 30,36 13

- восьмой интервал составляет 30,36 до 30,43 6

примем m

=8

- девятый интервал составляет 30,43 до 30,50 2

Так, в нашем примере объединяются два последних интервала, их ширина становится равной 0,14. Общее число интервалов становится равным 8.

Результаты производимых вычислений заносятся в первую половину таблицы 2, а затем строится сама гистограмма (рис.1).

Определяем

для каждого из интервалов.

;
;
;
;
;
;
;

Построим гистограмму

Рис.1

Из вида гистограммы на рис. 1 можно сделать предположение о том, что вероятность результата измерения подчиняется нормальному закону. Проверим правдивость этой гипотезы.

4. Проверка нормальности закона распределения по критерию Пирсона.

Для расчета критерия Пирсона необходимо знать эмпирические частоты

и теоретические вероятности
для каждого интервала
. Для расчета вероятностей используется функция Лапласа:

Значения X1 и X2 соответствуют началу и концу интервала. Для каждого из этих значений рассчитываем относительный доверительный интервал t, а затем из таблиц функции Лапласа находим соответствующие значения этой функции

и
.

Рассчитаем значение относительного доверительного интервала t для каждого из интервалов.

;

;
;Из таблицы найдем

;
;
;
;

;
;
;
;

;
;
;
;

;
;
;
;

;
;
;
;

;
;
;
;

;
;
;

;

Определим значение P для каждого интервала:

;
;
;
;
;
;
;

Рассчитаем значение

– критерия для каждого интервала и суммарное значение
:

;
;
;
;
;
;
;