2. С помощью правила «трех сигм» проверяем наличие или отсутствие промахов.
Таким образом, ни один из результатов не выходит за границы интервала
, следовательно, с вероятностью 0,9973 гипотеза об отсутствии грубых погрешностей принимается.3. Построение гистограммы и выдвижение гипотезы о виде закона распределения вероятности.
Для того чтобы построить гистограмму, необходимо результаты отдельных измерений расположить в так называемый вариационный ряд по возрастанию их численных значений.
Участок оси абсцисс, на котором располагается вариационный ряд значений физической величины, разбивается на k одинаковых интервалов
. При выборе числа интервалов следует придерживаться следующих рекомендаций:Число измерений «n» | Число интервалов «k» |
40-100 | 7-9 |
100-500 | 8-12 |
500-1000 | 10-16 |
1000-10000 | 12-22 |
Тогда:
Начало первого интервала выбирается таким образом, чтобы это значение оказалось меньше, чем минимальный результат вариационного ряда. Последний интервал должен покрывать максимальное значение ряда. Выберем начало первого интервала в точке 29,87, тогда конец последнего (9-го) интервала окажется в точке 30,5.
Затем для каждого интервала подсчитывается количество результатов mi, попавших в данный интервал и определяется
Если в интервал попадает меньше пяти наблюдений, то такие интервалы объединяют с соседними, соответственно изменяется и параметр
.начало окончание кол-во совпадений mi
- первый интервал составляет 29,87 до 29,94 6
- второй интервал составляет 29,94 до 30,01 9
- третий интервал составляет 30,01 до 30,08 8
- четвертый интервал составляет 30,08 до 30,15 22
- пятый интервал составляет 30,15 до 30,22 17
- шестой интервал составляет 30,22 до 30,29 12
- седьмой интервал составляет 30,29 до 30,36 13
- восьмой интервал составляет 30,36 до 30,43 6
примем m
=8- девятый интервал составляет 30,43 до 30,50 2
Так, в нашем примере объединяются два последних интервала, их ширина становится равной 0,14. Общее число интервалов становится равным 8.
Результаты производимых вычислений заносятся в первую половину таблицы 2, а затем строится сама гистограмма (рис.1).
Определяем
для каждого из интервалов. ; ; ; ; ; ; ;Построим гистограмму
Рис.1Из вида гистограммы на рис. 1 можно сделать предположение о том, что вероятность результата измерения подчиняется нормальному закону. Проверим правдивость этой гипотезы.
4. Проверка нормальности закона распределения по критерию Пирсона.
Для расчета критерия Пирсона необходимо знать эмпирические частоты
и теоретические вероятности для каждого интервала . Для расчета вероятностей используется функция Лапласа:Значения X1 и X2 соответствуют началу и концу интервала. Для каждого из этих значений рассчитываем относительный доверительный интервал t, а затем из таблиц функции Лапласа находим соответствующие значения этой функции
и .Рассчитаем значение относительного доверительного интервала t для каждого из интервалов.
; ; ;Из таблицы найдем ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;Определим значение P для каждого интервала:
; ; ; ; ; ; ;Рассчитаем значение
– критерия для каждого интервала и суммарное значение : ; ; ; ; ; ; ;