Содержание
Введение
1. Общая характеристика технологического процесса
1.1 Установка очистки газа от сераорганических соединений и осушки У-370
1.1.1 Блок смешения и сепарации У-371
1.1.2 Блок очистки У-372
1.1.3 Блок осушки и отбензинивания газа У-374
1.1.4 Блок подсобных средств У-379
2. Статистический анализ точности и стабильности процесса
2.1 Сбор экспериментальных данных
2.2 Определение точечных оценок закона распределения результатов наблюдений
2.3 Исключение результатов с грубыми погрешностями
2.4 Построение гистограммы
2.5 Определение коэффициента точности
2.6 Определение коэффициента настроенности
2.7 Определение фактического коэффициента настроенности
2.8 Определение допустимого коэффициента точности
2.9 Определение коэффициента запаса точности
2.10 Определение коэффициента стабильности
3. Применение инструментов контроля качества
Заключение
Список использованных источников.
Приложение А – Графическое представление результатов наблюдений
Приложение Б – Представление факторов влияющих на технологический процесс
Приложение В – Графическое представление факторов, влияющих на технологический процесс( причинно-следственная диаграмма)
Введение
Важнейшим источником роста эффективности производства является постоянное повышение технического уровня и качества выпускаемой продукции. Для технических систем характерна жесткая функциональная интеграция всех элементов, поэтому в них нет второстепенных элементов, которые могут быть некачественно спроектированы и изготовлены. Таким образом, современный уровень развития научно- технического прогресса значительно ужесточил требования к техническому уровню и качеству изделий в целом и их отдельных элементов. Системный подход позволяет объективно выбирать масштабы и направления управления качеством, виды продукции, формы и методы производства, обеспечивающие наибольший эффект усилий и средств, затраченных на повышение качества продукции. Системный подход к улучшению качества выпускаемой продукции позволяет заложить научные основы промышленных предприятий, объединений, планирующих органов. В отраслях промышленности статистические методы применяются для проведения анализа качества продукции и процесса. Анализом качества является анализ, посредством которого с помощью данных и статистических методов определяется отношение между точными и замененными качественными характеристиками. Анализом процесса является анализ, позволяющий уяснить связь между причинными факторами и такими результатами, как качество, стоимость, производительность и т.д. Контроль процесса предусматривает выявление причинных факторов, влияющих на бесперебойное функционирование производственного процесса. Качество, стоимость и производительность являются результатами процесса контроля. Статистические методы контроля качества продукции в настоящее время приобретают все большее признание и распространение в промышленности.Научные методы статистического контроля качества продукции используются в следующих отраслях: в машиностроении, в легкой промышленности, в области коммунальных услуг. Основной задачей статистических методов контроля является обеспечение производства пригодной к употреблению продукции и оказание полезных услуг с наименьшими затратами.Статистические методы контроля качества продукции дают значительные результаты по следующим показателям:. повышение качества закупаемого сырья;. экономия сырья и рабочей силы;. повышение качества производимой продукции;. снижение затрат на проведение контроля;. снижение количества брака;. улучшение взаимосвязи между производством и потребителем;. облегчение перехода производства с одного вида продукции на другой.Главная задача – не просто увеличить качество продукции, а увеличить количество такой продукции, которая была бы пригодной к употреблению.В данной курсовой работе анализируется состояние технологического процесса очистки сырого газа от сероводорода. Для того чтобы проанализировать состояние производства товарного газа и качество выпускаемой продукции необходимо использовать статистический анализ точности и стабильности. Применение инструментов контроля качества позволяет решить основную задачу статистических методов – обеспечение производства пригодной к употреблению продукции и оказание полезных услуг с наименьшими затратами.Цели курсовой работы:- с помощью статистического анализа точности и стабильности определить дефекты по ходу процесса производства товарного газа;
- с помощью инструментов контроля качества разработать мероприятия по улучшению качества данного процесса.
1 Общая характеристика технологического процесса
Установи 1,2,3У370 предназначены для сепарации, очистки сырого газа от сероводорода и углекислоты, его осушки, очистки от сероорганических соединений и отбензинивания газа.
По проекту расчетный фонд рабочего времени составляет 8000 часов в год. Все технологические процессы производства непрерывны и автоматизированы. Проектом предусмотрено увеличение мощности по переработке газа на 15% от номинальной,
Процесс осушки и очистки газа включает следующие технологические установки и вспомогательные объекты:
1. Узел сепарации 4У371 предназначен для сепарации сырьевого газа Карачаганакского НГКМ, поступающего на установки сероочистки (1,2,3У-370) 3 очереди завода, от тяжелых углеводородов, механических примесей и ингибиторов.
Узел сепарации состоит из четырех технологических линий, мощность каждой из которых составляет 2,5млрд. нм3 в год. Суммарная производительность установки в номинальном режиме 7,5 млрд. нм3 /год (3 сепаратора в работе, один в резерве), в максимальном режиме - 10 млрд. нм3 в год.
2. Замерный пункт сырого газа (установка У-15/368 ) предназначен для приема сырого газаОренбургского НГКМ с промыслов и,который направляется с У15 на установки сероочистки 1, 2 очередей, с У368 на установки 3 очереди. Замерный пункт предназначен для регистрации входных параметров газа (температура, давление, расход).
3. Три установки механической сепарации, очистки, осушки и отбензиневания природного газа (уст. У370 ) производительностью по 5 млрд.нм3 в год каждая. В связи с использованием одной полулинии на 2У 370 или 3У 370 производительностью 2,5 млрд.нм3/ год для очистки газов регенерации цеолитов ОГПЗ и ОГЗ, общая производительность по сырому газу по установкам 1,2,3У370 составляет 12.5 млрд.нм3/год.
У-370 состоит из:
- отделения смешивания и сепарации газа, где производится удаление механических примесей и капельной жидкости (У-371);
- отделения очистки газа от Н2S и СО2 водным раствором диэтаноламина (ДЭА) или водным раствором метилдиэтаноламина или их смесью (ДЭА, МДЭА) или абсорбентом “Новамин”, дегазации и хранения раствора аминов (У-372). Метилдиэтаноламин (МДЭА) и “Новамин” по своим свойствам близок к ДЭА и не требует дополнительных мероприятий по безопасности ведения технологического процесса и обезвреживания вредных веществ, включая коррозийную стойкость оборудования, которое существует на заводе согласно технологического регламента на промышленный процесс ДЭА - очистки, поэтому в дальнейшем описание процесса идет как для ДЭА -очистки.
- отделение осушки газа водным раствором моноэтиленгликоля (МЭГ), очистки газа от сероорганических соединений и отбензинивания газа методом низкотемпературной масляной абсорбции (У-374).
1.1 Установка очистки газа от сероорганических соединений и осушки У-370
Очистка и осушка газа производятся на трех идентичных установках 1,2,3У370 проектной производительностью на номинальном режиме работы установки 5 млрд нм3/ год каждая. В связи с использованием одной полулинии 2У 370 или 3У 370 производительностью 2,5 млрд.нм3/год для очистки газов регенерации цеолитов ГПЗ и ГЗ, общая производительность по сырому газу по установкам 1,2,3У 370 составляет 12,5 млрд.нм3/год из них не менее 2,5 млрд.нм3/год сырья Карачаганакского НГКМ.
Технологическая схема и аппаратное оформление этих установок одинаковое, кроме незначительных отличий, отраженных в описании.
В состав каждой установки входит:
-блок смешения и сепарации сырого газа - У371;
-блок очистки газа от сероводорода и регенерации раствора ДЭА, МДЭА, смеси ДЭА и МДЭА или «Новамина» - У372;
-блок осушки, отбензинивания и очистки газа от меркаптанов, регенерация гликоля и абсорбента - У-374;
-блок подсобных средств - У-379.
1.1.1 Блок смешения и сепарации У-371
Назначение блока:
– смешивать в заданных пропорциях газ № 1 и газ № 2, и рекомпремированный на У-331 газ стабилизации конденсата;
– улавливать твердые частицы и капельную жидкость, которые могут присутствовать в газе, так как наличие твердых частиц и углеводородного конденсата приводит к вспениванию раствора аминов.
Сырой газ № 1 и № 2 подаются на установку с замерного пункта с температурой минус 20+400С с давлением до 60 кгс/см 2. На входе на установку установлены отсекатели: на трубопроводе газа №1 360 RSV10(20,30); на трубопроводе газа №2 360RSV11(21,31); на трубопроводе газа стабилизации 360RSV12(22,32). Каждый отсекатель оснащен блокировкой по низкому давлению воздуха пневмопривода 360PALCo 10(20,30); 360PALCo 11(21,31) и 360PALCo 12(22,32), соответственно при срабатывании которых (4,0 кгс/см2) отсекатели закрываются.
После смешения природный газ направляется во входной сепаратор 371В-01. Соотношение расходов газа № 1 и № 2 поддерживается автоматически при помощи регулятора расхода поз. 371FRC-01 и пропорционального регулятора расхода поз.371FRC-02, воздействующих на клапаны поз. 371FCV-01 и 371FCV-02. Величины расходов регистрируются на щите в операторной приборами 371FRC-01 и 371FRC-02.
Газ стабилизации, подаваемый с установки У-331 по трубопроводу 6, подмешивается к общему потоку природного газа с регулированием расхода и давления. Расход газа стабилизации поддерживается регулятором поз. 371FRC03, воздействующим на клапан поз. 371FCV03. Регулирование давления осуществляется прибором поз.331PRC-13, воздействующим на тот же клапан. Контроль температуры приходящих потоков осуществляется приборами поз. 371 ТI 101 - для газа № 1;371 ТI 102 - для газа № 2, 371 ТI 103 - для газа № 3