Энтропия для изобарного процесса вычисляется по формуле:
(11)4.2 Расчёт теплоты процессов и тепла за цикл
Подводимую и отводимую удельные теплоты в изобарном процессе рассчитаем по формуле:
(12)Таким образом,
.Вычислим
: .Рассчитаем
:Результаты расчётов представлены в таблице 8.
Таблица 8 – Основные параметры состояния рабочего тела в узловых точках цикла, изменение калорических параметров в процессах и за весь цикл идеального ГТД
Значения | Точки | Для цикла | |||||
0 | 1 | 2 | 3 | 4 | 5 | ||
0,265 | 0,736 | 5,89 | 5,89 | 2,94 | 0,265 | - | |
2,427 | 1,17 | 0,265 | 0,66 | 1,084 | 6,053 | - | |
223,3 | 299 | 542 | 1350 | 1107 | 557 | - | |
Значения | Процесс | Для цикла | |||||
0–1 | 1–2 | 2–3 | 3–4 | 4–5 | 5–0 | ||
55 | 177 | 589 | -177 | -401 | -243 | 0 | |
77 | 247 | 822 | -247 | -560 | -339 | 0 | |
0 | 0 | 0,9 | 0 | 0 | -0,9 | 0 | |
0 | 0 | 822 | 0 | 0 | -339 | 483 | |
-77 | -247 | 0 | 247 | 560 | 0 | 483 |
5.1 Расчёт для процессов, изображаемых в p-v-координатах
Определение значений параметров p и v в промежуточных точках процессов 1–2, 3–4 и 4–5 позволяет построить достаточно точные графики. Поскольку процессы 1–2 и 3–4–5 адиабатные, то для любой пары точек на них справедливы соотношения:
Отсюда, задаваясь значениями параметров
и используя известные величины , найдём параметры промежуточных точек:Значения точек сведём в таблицу 9.
Промежуточные точки процессов также, как и характерные, откладываем на графике p-v и через них проводим плавную кривую процесса.
5.2 Расчёт для процессов, изображаемых в T-S-координатах
Для построения цикла ГТД в T-S координатах необходимо интервалы изменения температур от
до и до разбить на три примерно равные части. Для значений температур процессов , , , вычисляем соответствующие изменения энтропии рабочего тела в процессах 2–3 и 0–5 по соотношениям:Вычислим параметры промежуточных точек для построения графика цикла ГТД в T-S координатах:
Значения полученных точек отразим в таблице 9.
Полученные изменения энтропии откладываем в принятом масштабе на T-S диаграмме и по выбранным значениям Т находим координаты промежуточных точек процесса, через которые проводим плавную кривую.
Таблица 9 – Параметры состояния рабочего тела в промежуточных точках процессов и изменение энтропии
Параметр | Точки | |||||||||
a | b | c | d | e | f | g | ||||
1,06 | 1,51 | 2,42 | 4,50 | 1,25 | 0,71 | 0,47 | ||||
0,9 | 0,7 | 0,5 | 0,8 | 2 | 3 | 4 | ||||
Параметр | a¢ | b¢ | c¢ | d¢ | ||||||
T, K | 811 | 1081 | 446 | 335 | ||||||
Параметр | Процесс | |||||||||
2-a¢ | 2-b¢ | 0-c¢ | 0-d¢ | |||||||
0,410 | 0,703 | 0,702 | 0,412 |
6. Расчет энергетических характеристик ГТД
Вычислим скорости набегающего потока С0 и скорость истечения газа из реактивного сопла С5, а также удельную тягу двигателя Rуд, секундный расход воздуха Gвозд, массу двигателя Gдв, суммарную массу топлива
, термический КПД и термический КПД цикла Карно , действующего в том же интервале максимальной и минимальной температур.Скорость набегающего потока:
Скорость истечения рабочего тела из сопла двигателя: