Смекни!
smekni.com

Электронный секундомер 2 (стр. 3 из 4)


Рис. Эквивалентная схема подключения светодиода к выходу

логического элемента И-НЕ.

Для индикации секунд в работе был выбран цифро-буквенный индикатор на основе светодиодных структур КЛЦ201А и дешифратор КР514ИД2. Воспользуемся основными параметрами данных микросхем для расчета.

Параметры микросхемы К176ИЕ5 и светодиода КЛЦ201А такие:

К555ЛА3 КЛЦ201А
Напряжение питания:Uп = +5 В Сила света:Iv≥ 0,2 мкд
Выходное напряжение низкого уровня:U°вых ≤ 0,5 В Постоянное прямое напряжение:Uпр≤ 2В
Выходное напряжение высокого уровняU1вых≥ 2,7 В Номинальный постоянный ток:Iпр.ном = 20 мА

Для индикации светодиода HG необходимо обеспечить прохождение прямого тока Іпр.ном = 10мА по цепи Uп–Rогр–НG–DD1.1–корпус. При этом на микросхеме DD1 будет падать напряжения U0вых = 0,5В, а на светодиоде HG будет падать напряжение Uпр = 2 В.

Общее падение напряжения на микросхеме DD1.1 и на светодиоде НG составит:

Uобщ = U0вых + Uпр = 0,5 В + 2 В = 2,5 В

Таким образом, на ограничительном резисторе падение напряжения URогр должно составить:

URогр = Uп – Uобщ = 5 В – 2,5 B = 2,5 В

Определим величину сопротивления ограничительного резистора Rогр в соответствии с законом Ома:

Rогр= URогр/Iпр.ном = 2,5 В / 10 ·10-3 А = 250 Ом

При этом мощность, выделяемая на резисторе, составит:

PRогр = URогр ·Iпр.ном = 2,5 В · 10 ·10-3 А = 25 · 10-3 Вт = 25 мВт

На основе выполненного расчета по справочнику [4] выбираем резистор МЛТ 0,125–270 Ом ± 5%.

3. Разработка и описание работы блока

3.1. Описание работы генератора импульсов

Управляемый генератор серии импульсов с частотой их следования 10 Гц, как уже упоминалось в разделе 2, в данной работе выполняется по схеме мультивибратора на логических элементах 2ИЛИ-НЕ и 2И-НЕ.

Принцип работы данного генератора таков. При подаче сигнала нулевого уровня на входы элементов 2ИЛИ-НЕ (DD1, DD2) на выходе элемента 2И-НЕ (DD3) устанавливается постоянный уровень логической единицы. При подаче на входы элементов 2ИЛИ-НЕ логической единицы, на выходе элемента 2И-НЕ начинает формироваться серия прямоугольных импульсов. Детальное строение схемы генератора изображено на принципиальной схеме в приложениях.

3.2. Описание работы собственно цифрового блока

Счетчиком называют устройство, предназначенное для подсчета числа импульсов, поданных на счетный вход импульса, деления их частоты и сохранения двоичных многоразрядных чисел.

В данной работе использован счетчик импульсов транзисторно-транзисторной логики (ТТЛ). Основную логическую операцию в элементе ТТЛ исполняет многоэмитерный транзистор. В данной работе используэтся четырехразрядный двоично-десятичныйсчетчик – К555ИЕ2. Внутренняя структура, цоколевка и условное обозначение микросхемы К555ИЕ2 приведены на рисунке 3.1.

Рис.3.1. Структура, условное обозначение и цоколевка микросхемы ИЕ2.

Счетчик состоит их четырех комбинированных триггеров типа JK. Первый триггер может работать самостоятельно и образует делитель входной последовательности импульсов с коэффициентом деления Кд=2. Тактовый вход первого триггера СО (вывод 14) инверсный динамический, поэтому переключение триггера происходит спадом входного импульса, а выход QO – вывод 12. Остальные три триггера образуют синхронный делитель на пять (Кд=5). Тактовые входы С1 (вывод 1) инверсные динамические, управляются синхронно спадом входного импульса.

Счетчик имеет два входа R для синхронного сброса (обнуления), это выводы 2 и 3, а также два синхронных входа предварительной установки двоичного кода (1001=9), выводы 6 и 7. Входы R и S с логикой 2И-НЕ на входе. Входы синхронного сброса R1 и R2 запрещают действие импульсов по всем тактовым входам и входам предварительной установки. Импульс, поданный на вход R, производит сброс данных по всем триггерам одновременно. Подача напряжения на входы S1 и S2 запрещает прохождение тактовых сигналов, а также сигналов от входов R1 и R2 на счетчик. На выходах устанавливается код 1001=9. Так как выход первого триггера внутренне не соединен с последующими тремя триггерами, то возможны три независимых режима работы.

В данной работе ИЕ2 используется как двоично-десятичный счетчик с весом двоичных разрядов 8-4-2-1. В этом случае необходимо вывод 12 (выход первого триггера) соединить с выводом 1 внешней перемычкой. Входная последовательность импульсов подается на тактовый вход триггера (вывод 14). Временные диаграммы его работы приведены на рис.2. Режим работы ИЕ2 можно проследить по таблице состояний (табл.3.1) – это сброс выходных данных в нуль, установка предварительного кода 1001=9 и счет. В табл.3.2 дается последовательность двоично-десятичного счета в счетчике ИЕ2 [1].

Входы сброса и установки Выходы
R1 R2 S1 S2 Q0р Q1Р Q2Р Q3Р
1 1 0 X 0 0 0 0
1 1 X 0 0 0 0 0
X X 1 1 1 0 0 1
0 X 0 X Счет
X 0 X 0 Счет
0 X X 0 Счет
X 0 1 X Счет

Табл.3.1- Состояние счетчика ИЕ2

Кол-во импульсов Выходы счетчиков
Q Q Q Q
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 0 0 0 0
11 0 0 0 1
12 0 0 1 0

Табл.3.2 – Последовательность двоично-десятичного счета в ИЕ2

3.3. Описание работы узла индикации

Узел индикации включает в себя дешифратор, резисторы и цифро-буквенный индикатор. Все эти элементы были выбраны в предыдущих разделах.

Дешифратор типа КР514ИД2 (DD4) - дешифратор четырехразрядного двоичного кода в сигналы 7-сегментного кода, предназначен для управления полупроводниковыми цифро-буквенными индикаторами на основе светоизлучающих диодных структур с разьединенными катодами. Графическое изображение микросхемы приведено ниже на рисунке 3.3.

Рисунок 3.3 – Микросхема КР514ИД2:

а – функциональная схема; б – принципиальная электрическая схема выходных каскадов; в – схема выходов; г – условное графическое обозначение

Назначение выводов: D0 – D3 – информационные входы; Г – вход гашения; А, В, С, D, E, F, G – выходы, подключаемые к сегментным индикаторам; 16 – Uпит; 8 – общий. Дешифрирование входных сигналов происходит при установлении высокого логического уровня на входе Г. При этом входной информации (на выводах D3, D2, D1, D0) 0000 будет соответствовать выходная (на выводах A, B, C, D, E, F, G) 0000001, что обусловливает возбуждение на индикаторе символа

. Сигнал низкого логического уровня, поступающий на вход Г (гашение), переводит все выходы дешифратора в состояния логических нулей (независимо от входной информации), при этом ни один сегмент индикатора не возбуждается. Дальнейшие логические соответствия входной и выходной информации и отображаемого символа следующие:

0001-1001111 (1)

0010-0010010 (2)

0011-0000110 (3)

0100-1001100 (4)

0101-0100100 (5)

0110-0100000 (6)

0111-0001111 (7)

1000-0000000 (8)

1001-0000100 (9)

ЦБИ на основе СИД являют собой интегрированные микросхемы с диодных структур (в виде сегментов-черточек) и необходимых электрических соединений с выводами микросхем. Готовые сегменты-черточки размещают так, чтобы при нужных комбинациях возбужденных сегментов происходило четкое отражение одной цифры или буквы. В ЦБИ на СИД необходимо обеспечивать минимальную разницу яркости сегментов, что само собой является тяжелой задачей.

Физически ЦБИ составляет совокупность СИД сегментов. Если в СИД сегменте протекает прямой ток, то в нем будут появляться носители зарядов (электроны и дырки) преимущественно в месте p-n-перехода. При самовольной рекомбинации электронов и дырок соответствующий сегмент начинает светиться. Руководя свечением нужной комбинации сегментов можно отображать все 10 цифр (от 0 до 9) и некоторые буквы.

Схематическое изображение индикатора КЛЦ201А подано на рисунке 3.4.

Рисунок 3.4. Схематическое изображение индикатора КЛЦ201А.

3.4. Описание работы блока в целом

После включения питания блока необходимо нажать на кнопку Кн2 для установки триггера УСЧ в нулевое состояние. После первого нажатия на кнопку Кн1 генератор УГСИ начинает вырабатывать серию импульсов с частотой F1=1 Гц. Серия импульсов поступает на СЕС с периодом в 1 сек.

В определенный момент времени в узле счетчика УСЧ будет находится код, пропорциональный длительности времени поступления импульсов. Узел индикации обеспечивает индикацию на ЦБИ текущего кода узла УСИ.