Вариант 2П.Схема компоновки пластин Сх:54/54. Результаты расчета:
ω1= 6,0/(986∙54∙0,00245) =0,046 м/с; Re1=0,046∙0,0083∙986/0,00054 = 697;
α1 = 1836(697/553)0,73 = 2147 Вт/(м2∙К);
ω2=21,8/(996∙54∙0,00245) =0,165 м/с;
Re2 = 0,165∙0,0083∙996/0,000804 =1697;
α2 = 4017(1697/1351)0,73 = 4744 Вт/(м2∙К);
К= (1/2174+ 1/4744+ 0,000747)-1=705 Вт/(м2∙К);
F =1 822 650/(40,8∙705) =63,3 м2.
Номинальная поверхность F2п= 63,0 м2 недостаточна, поэтому необходимо применить более сложную компоновку пластин. Очевидно, целесообразно увеличить скорость движения теплоносителя с меньшим коэффициентом теплоотдачи, т. е. горячей жидкости. При этом следует иметь в виду, что несимметричная компоновка пластин, например по схеме Сх:(27+ 27)/54, приведет к уменьшению средней движущей силы, поскольку возникнет параллельно-смешанный вариант ' взаимного, направления движения теплоносителей. При симметричной компоновке, т. е. при одинаковом числе ходов для обоих теплоносителей, сохраняются противоток и среднелогарифмическая разность температур.
Рассмотрим Сх: (27+27)/54. Скорость горячей жидкости и число Re1 возрастут вдвое, а коэффициент теплоотдачи ai увеличится в соответствии с формулой (2.20) в 20,73= 1,66 раза. Коэффициент α2 останется неизменным. Получим:
α1=2174∙1,66 = 3605 Вт/(м2∙К);
К=( 1/3605+ 1/4744+0,000747)-1=810 Вт/(м2∙К).
В данном случае поправку на среднелогарифмическую движущую силу можно найти так же, как для кожухотрубчатых теплообменников с одним ходом в межтрубном пространстве и четным числом ходов в трубах:
ε∆t = 0,813 (см. разд. 2.4.1).
Тогда
∆tср = 40,8∙0,813 = 33,2°С.
Требуемая поверхность теплопередачи
F=1822 650/(810∙33,2) =67,8 м2.
Номинальная поверхность F2п=63,0 м2 по-прежнему недостаточна.
Перейдя к симметричной компоновке пластин, например по схеме Сх: (27 + 27)/(27 + 27), вернемся к схеме чистого противотока с одновременным увеличением α2 в 1,66 раза:
α2 = 4744 •1,66 = 7875 Вт/ (м2 • К);
К = (I /3605 + 1 /7875 + 0.000747) -1 = 869 Вт/ (м2 • К);
F= 1 822 650/(40,8∙869) =51,4 м2.
Теперь нормализованный теплообменник подходит с запасом
∆= (63 — 51,4) 100/51,4=22,6%.
В этом теплообменнике скорость горячей жидкости
ω1=0,046∙2 = 0,092 м/с, Re1 =697∙2= 1394,
скорость холодной жидкости
ω2 = 0,165∙2 = 0,33 м/с, Re2= 1697∙2=3394.
Масса аппарата: М2п=1530 кг.
Вариант ЗП.Учтя опыт предыдущих расчетов, примем трехпакетную симметричную компоновку пластин: Сх: (14+14+15)/(14+14+15) (всего в аппарате 86 пластин, F3п — 50 м2). При этом скорости и числа Re возрастут в 27/14=1,93 раза:
ω1=0,092•1,93 = 0,1774 м/с; Re1 = 1394•1,93 = 2688;
ω2 = 0.33 • 1,93 = 0,636 м/с, Re2 = 3394 •1,93 = 6546.
Коэффициенты теплоотдачи возрастут в (1,93)0,73= 1,615 раза:
α1 =3605∙1,615 = 5823 Вт/(м2∙К); α2 = 7875∙1,615= 12 720 Вт/(м2∙К);
К=1003 Вт/(м2∙К); F = 44,5 м2; ∆=12,4 %; Мзп = 1400 кг.
Для выбора оптимального варианта из трех конкурирующих необходимо определить гидравлические сопротивления в аппаратах.
2.4 Расчет гидравлического сопротивления пластинчатых теплообменников
Гидравлическое сопротивление для каждого теплоносителя определяют по формуле [8]:
где L— приведенная длина каналов, м (см. табл. 2.14); dэ — эквивалентный диаметр каналов, м; х — число пакетов для данного теплоносителя, ωш—скорость в штуцерах на входе и выходе; ξ = а1/Re — для ламинарного движения, ξ = а2/Re0,25— для турбулентного движения. Коэффициенты а1и а2 зависят от типа (площади) пластины:
Площадь пластины, м | 0,2 | 0,3 | 0,6 | 1,3 |
а1 | 425 | 425 | 320 | 400 |
а2 | 19,6 | 19,3 | 15,0 | 17,0 |
Для определения скорости в штуцерах в таблице приведены диаметры условных проходов штуцеров. При скорости жидкости в штуцерах меньше 2,5 м/с их гидравлическое сопротивление можно не учитывать.
- Расчет гидравлических сопротивлений.
Вариант 1П. Результаты расчета гидравлических сопротивлений:
ξ 1 = 15,0/
=3,09; х1 = 1; L=l,01 м; dш = 0,2 м; ω1 =0.0365 м/с; ω1ш = 6,0∙4/(π∙0,22∙986) = 0,194 м/с<2,5 м/с;∆ρ1=3,09∙
=247 Паξ2=
; х2=1;ω 2=0,1314 м/с; ω 2ш=
=0,697 м/с < 2,5 м/с;∆ρ2 = 2,47∙
=2584 Па.Вариант 2П.Результаты расчета:
∆ρ1=2∙2,45∙
=2488 Паξ1=
; х1=2; ω1=0,092 м/сξ2=
; х2=2; ω2=0,33 м/с∆ρ2 = 2∙1,965∙
=25935 Па.Вариант ЗП. Результаты расчета:
ξ1=
; х1=3; ω1=0,1774 м/с∆ρ1=3∙2,08∙
=11781 Паξ2=
; х2=3; ω2=0,636 м/с∆ρ2 = 3∙1,67∙
=122807 Па.Как видно, уменьшение массы аппаратов сопровождается увеличением гидравлических сопротивлений и, следовательно, ростом энергетических затрат на их преодоление. Окончательный выбор наилучшего варианта из пяти теплообменников (двух кожухотрубчатых и трех пластинчатых) — задача технико-экономического анализа.
ЗАКЛЮЧЕНИЕ
Теплообменные аппараты имеют целый ряд преимуществ и как правило, используются во многих сферах деятельности. Теплообменные аппараты могут использоваться как для охлаждения и так и для нагрева жидкостей и газа. Например, охлаждение печей, турбин, трансформаторов, двигателей, различных эмульсий, гидравлической смазки. То есть, теплообменные аппараты со значительной уверенностью можно назвать многофункциональными.
Cледует сказать о том, что теплообменный аппарат способен в значительной степени ускорить определенные процессы в промышленности. Теплообменный аппарат – это некая необходимость для тех, кто в действительности стремится снизить уровень расходов на производственные процессы.
СПИСОК ЛИТЕРАТУРЫ
1. Методические указания для выполнения курсового проекта ректификационной колонны.
2. Лебедев П.Д., Щукин А.А. Теплоиспользующие установки промышленных предприятий (Курсовое проектирование). Учеб. Пособие для энергетических вузов и факультетов, 408с.
3. Методические указания к курсовому проектированию по курсу «Промышленные теплообменные установки и процессы.» Сост.: Яковлева В.А, Кураковская А.В.- Донецк: ДонНТУ, 2005г. -36с.
4. Павлов К. С., Романков П. Д., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии . Учебное пособие для вузов / под. ред. Романкова П. Д. 10-е изд. измен. и перераб.: Я: Химия, 1987 г. – 576 с.
5. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара: Справочник. Рек. Гос. Службой стандартных данных-
2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1984г, 89 с.