Смекни!
smekni.com

Системы контроля состояния подсистем танкера с использованием современной элементной базы (стр. 18 из 19)

Построим «дерево отказов» (рис.35), в котором «Возникновение аварии» является головным событием. Для его предотвращения необходимо рассмотреть все возможные причины его появления.

Возникновение аварии подразумевает выход из строя оборудования, поэтому будем его рассматривать как событие, происходящее одновременно с одним из анализируемых ниже.

Взаимоисключающими событиями являются появление и отсутствие сообщения оператору о предаварийной ситуации. Предположим, оператор не получил сообщения. Причиной этого может стать обрыв канала связи между оператором и системой или отказ компьютера. Разберем подробнее причины отказа компьютера. Таковых существует несколько: отключение электроэнергии в операторской, скачок напряжения в сети; а также возможен случай, когда компьютер работает бесперебойно, но ввиду его загруженности (например, из-за большого количества одновременно работающих программ) не хватает оперативной памяти. Причины этой ветви «дерева отказов» исчерпаны, поэтому перейдем к следующей.

Допустим, сообщение дошло до оператора. К аварии в этом случае могут привести либо неправильные действия оператора, либо отсутствие его реакции вообще. Оператор мог нажать не на ту кнопку по сигналу тревоги, если: он неопытен, или низко квалифицирован (недостаток образования), или просто ошибся, причины чего разбирать не будем. Если оператор не отреагировал на сообщение о предаварийной ситуации, значит он по каким-то причинам находился вне операторской или был недостаточно внимательным в процессе работы. Причиной снижения бдительности оператора может быть утомление или нездоровье, а также внимание оператора могли отвлечь внешние раздражители.

Таким образом, мы подробно разобрали возможные причины возникновения аварии и пришли к следующим выводам. Для обеспечения нормальной работы системы необходимо:

• перед работой проверить состояние канала связи;

• обеспечить бесперебойную работу компьютера;

• запретить загружать одновременно несколько емких программ;

• производить тщательный отбор операторов;

• запретить оставлять монитор без присмотра;

• создать оптимальные условия труда оператора.

8.4 Экологичность проекта

Будем рассматривать экологичность проекта с позиции возникновения аварийной ситуации, которая может привести к затоплению судна и воздействие последствий аварии на окружающую среду.

По статистике нефтеналивные танкеры наиболее часто подвергаются воздействию пожаров, которые приводят к взрывам и, как следствие, затоплению судна. Пожароопасные ситуации чаще всего возникают на судах перевозящих легковоспламеняющиеся грузы. Это связано, во-первых, с несовершенством существующих систем диагностики состояния судна, во-вторых, с несвоевременным предупреждением персонала о возникновении пожара. На танкерах пожароопасные ситуации возникают преимущественно в танках, затем в машинном отделении и в последнюю очередь в жилых и подсобных помещениях. Как известно нефть содержит в своем составе огромное количество веществ. При вдыхании паров сырой нефти человеком может возникнуть раздражение верхних дыхательных путей. Одной из подсистем в системе пожаротушения является система инертных газов, закачиваемых в танки для уменьшения самовоспламенения. Инертные газы, также отрицательно могут влиять на окружающую среду, поэтому на танкерах осуществляется непрерывный контроль за давлением инертных газов в танках; ведется непрерывное слежение за возможными их утечками.

При сжигании нефтепродуктов возникает огромное количество неорганических продуктов сгорания, отрицательно влияющих на окружающую среду. За предупреждение процессов возгорания и горения в системе пожаротушения существует несколько подсистем, таких как: система пенотушения, система углекислотного тушения, система водотушения. При попадании тушащей пены в морскую воду происходит ее разложение на составляющие группы мыл, которые отрицательно влияют на флору и фауну. Для предупреждения растекания пены на судах в простенках между корпусами ставятся отстойно-очистительные цистерны.

Для предупреждения растекания нефтепродуктов в случае аварии судно выполняется с двумя корпусами, вложенными друг в друга. Также существует система распространения гранулированных компаундов поглощающих нефтепродукты, находящиеся на поверхности воды. Также нефтепродукты с поверхности собираются с помощью насосов, перекачивающих их в специальный отстойные танки, расположенные в носовой части корпуса судна.

При возникновении аварийной ситуации на пустом танкере, например идущем на погрузку, может возникнуть проблема растекания мазута по поверхности воды. Мазут как и нефть покрывает поверхность воды очень тонкой пленкой, единственной отличие состоит в том, что нефть по сравнению с мазутом более густая и поэтому мазут при растекании занимает большие площади. Методы борьбы с такого рода авариями точно такие же как и при растекании нефти – использование боновых заграждений, перекачка загрязненной воды в отстойные цистерны и танки, использование различных сорбентов поглощающих нефтепродукты.

Таким образом, при возникновении аварии на танкере возникает множество отрицательно влияющих на окружающую среду последствий. Данных последствий поможет избежать цифровая система диагностики защиты танкера от затопления, которая позволит оценивать ситуацию в реальном времени, предсказать пути ее распространения и задействовать основные механизмы системы для борьбы с аварией. Достоинством системы является также ее непрерывная работа и в моменты возникновения аварийной ситуации, что позволяет принимать верные решения для ее устранения.

9. СОЦИАЛЬНАЯ ЗНАЧИМОСТЬ РАБОТЫ

Проектируемая в дипломе система контроля состояния подсистем на нефтеналивном танкере типа "Победа" имеет огромную социальную значимость. Количество аварий происходящих на судах все еще велико. Это связано в первую очередь с несовершенством систем диагностики предаварийного состояния, во-вторых невозможностью существующих систем предсказывать ход развития аварийной ситуации. Из достоинств разрабатываемой системы можно выделить непрерывную диагностику состояния судна до и в момент аварии. Так как сигналы с датчиков централизовано сведены в рубку, это позволяет принимать своевременные и верные решения командным составом судна о проведении мероприятий по борьбе с возникшей чрезвычайной ситуацией. Реализация системы диагностики в цифровом виде с использованием модулей ADAM, позволяет быстро масштабировать и конфигурировать систему в соответствии с выдвигаемыми требованиями.

ЗАКЛЮЧЕНИЕ

Тенденция к дальнейшему сокращению численности обслуживающего персонала; необходимость ограничения потока информации до уровня, определяемого возможностями оператора к восприятию и переработке информации, а также к осуществлению воздействий; требования ограничения массогабаритных характеристик пультов управления, щитов и панелей, а также необходимость регистрировать изменение многих параметров подсистем — все это обусловило создание системы обработки и представления информации.

В данном дипломном проекте произведен анализ подсистем нефтеналивного танкера. В качестве контролируемых подсистем были выбраны: подсистема пожаротушения, подсистема кондиционирования и осушительно-балластная подсистема. Подсистема управления энергетическими установками рассмотрена не была, в силу ограничений накладываемых правилами морского регистра России.

Для выбранных подсистем были выделены основные принципы диагностики их состояния. Была предложена схема реализации соединений системы с помощью модулей ADAM. Использование данных технологий предоставляет огромные перспективы при реализации систем, так как позволяет переконфигурирвоать или перемасштабировать систему в короткие промежутки времени.

Использование SCADA-системы позволило организовать диспетчерский уровень с интуитивно понятным интерфейсом пользователя.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Александров А. В. Судовые системы. Л., «Судостроение», 1982.

2. Андреева О. А., Максимов В. И., Печковский B.C. Современные средства тушения судовых пожаров воздушно-механической пеной. Л., «Морской транспорт», 1989.

3. Ассоров Ф. Г., Пономарев И. М., Шпиков Б. И. Тушение пожаров на морских судах. М., «Морской транспорт», 1996.

4. Ассоров Ф. Г., Шпиков Б. И. Пожарная безопасность на морском транспорте. М., «Транспорт», 1995.

5. Бродский А. И. Физическая химия. Т. 1. М.—Л., Госхимиздат, 1978.

6. Буряк В. Д. О целесообразности применения систем паротушения на грузовых судах.— «Судостроение», 1994, № 5.

7. Волков Н. Н. Конструктивная противопожарная защита жилых помещений пассажирских судов.— «Судостроение», 1994, № 5.

8. Митькевич Г. П. Измерение прочности цены на связь. — «Прикладная химия», т. XXII, 1968.

9. Монахов В. Т. Справочные данные по горению, развитию и тушению пожаров. Высшая школа МООП РСФСР. М 1987.

10. Носов Н. С., Березин П. П. Противопожарная защита атомного ледокола «Ленин».— «Судостроение», 1974, №8.

11. Нэш П., Эштон Л. Борьба с пожарами и предотвращение их на судах. Пер. с англ.— «Мировое судостроение и флот», 1993, № 6.

12. Плоткин М., Сурикова А. Тушение пожаров (нефтепродуктов) тонкораспыленной водой.— «Морской флот», 1994, № 2.

13. Пономарев И. М. Пожарная профилактика на морском транспорте. М., «Морской транспорт», 1984.

14. Пономарев И. М. Система пенотушения на танкерах.— «Судостроение», 1998, № 12.

15. Рабинерсон А. А. Расчет теплоизоляции судовых противопожарных ограждений.— В сб. «Технология судостроения», 1979, № 6.

16. Ройтман М. Я. Основы противопожарного нормирования в строительстве. М., Стройиздат, 1986.