Смекни!
smekni.com

Наноструктурные углеродные материалы в электровакуумных лампах (стр. 3 из 4)

Во-вторых, вольт-амперные характеристики катодолюминесцентных ламп не смещены в область отрицательных управляющих напряжений, а наоборот, при некотором положительном потенциале на модуляторе автоэмиссионный ток еще практически отсутствует: UM [IK min < 0,5 мкА] > 500 В.
В-третьих, очевидно, что существует заметный разброс по величинам управляющих напряжений модулятора ΔUM [IK max= 100 мкА] ~ 300–400 В . Видимо, такой разброс характеристик связан с комплексом технических причин: неточность установки катода в держатель, неточность выставления расстояния модулятор–анод в процессе запайки вакуумной оболочки лампы, небольшой разброс длин пучков углеродных волокон, а также различное количество волокон в пучке для каждой лампы.
На основе данных ламп были созданы элементы видеоэкранов.
Перспективные области применения источников света с автокатодом. Спектр применения катодолюминесцентных источников света с АЭК широк. Это, в частности:

  • Осветительные лампы
  • Элементы подсветки ЖК-дисплеев
  • Плоские автоэмиссионные экраны (Field Emission Display – FED).
  • Пикселы больших видеоэкранов коллективного пользования.
  • Светофоры и семафоры.
  • Источники резервного освещения.
  • Сигналы спасения на воде и в горах.
  • Любые источники света высокой яркости с возможностью подбора спектра излучения.

Катодолюминесцентный источник света позволяет получить излучение видимого диапазона, спектральный состав которого благоприятен для визуального восприятия и не вызывает такой утомляемости глаз, как большинство известных источников света. В катодолюминесцентных излучателях отсутствует вредное инфракрасное и ультрафиолетовое излучение.
Свет от катодолюминесцентных источников можно получить диффузным или направленным в необходимый телесный угол для таких специальных применений, как видеоэкраны коллективного пользования.
Катодолюминесцентные лампы с автокатодом в своем составе не имеют ядовитых материалов и газов, вредных для здоровья человека. Для таких источников света не существует проблем производства и утилизации вышедших из строя ламп, связанных с загрязнением окружающей среды, как, например, для люминесцентных ламп, в которых имеются пары ртути.
К числу достоинств источников света на основе автоэмиссии относятся также низкая потребляемая мощность, высокое быстодействие, малые габариты и вес, высокая радиационная стойкость, малая материалоемкость и достаточно низкая стоимость изготовления.
Перечисленные преимущества излучателей с автокатодом позволяют эффективно использовать их в вышеуказанных приложениях и других областях техники.

3. Схема устройства эмиттера, изготовление заготовки и микронеровностей.

SiO2 Герметизирующие

Mo слои

Al2O3

Mo анодная пленка

Al2O3 диэлектрик

Mo управляющая пленка

Mo катодная пленка

Рис. 1. Микротриод с автоэлектронным катодом

Тонкопленочный катод с авто-эмиссией представляет собой сэндвич проводник-изолятор-проводник. Верхний проводник является сеточной пленкой с отверстиями диаметром 1 – 3 мкм., сквозь которое протравлена полость в изоляторе до нижнего проводника (подложки). На подложке находится металлический конус (эмиттер), и его вершина располагается в отверстии сеточной пленки. Размеры это конструкции очень малы и составляют единицы микрон. Это позволяет “убить двух зайцев” сразу: обеспечить высокие напряженности поля при небольших приложенных напряжениях (20 – 400 В.) и существенно снизить требование к давлению, поскольку даже для сравнительно плохого вакуума расстояние между электродами оказываются меньше длины свободного пробега.

Микронеровности на катодной пленки используют в качестве микроавтокатодов. Микронеровности формировались двумя методами. Оба способа использовали одну и туже исходную заготовку. На поверхность верхней молибденовой пленки многослойной структуры произвольно раскладывались полистироловые шарики диаметром 1 мкм. После этого сверху напылялся слой окиси алюминия, который покрывал всю поверхность, за исключением занятой шариками. После удаления шариков поверхность молибденовой пленки протравливалась в смеси серной и азотной кислот, так что в местах, свободных от окиси алюминия, образовались отверстия, достигающие промежуточного слоя оксида алюминия. Диаметр этих отверстий примерно 1 мкм. Затем с помощью вытравливания в ортофосфорной кислоте в слое окиси алюминия образовались полости. Одновременно при этом удаляется слой окиси алюминия, напыленый сверху. Затем подложка подвергалась термообработкой в вакууме при температуре 1000 градусов Цельсии. Для изготовления заготовки использовалась технология фотолитографии с электронной засветкой резиста. В этом случае получалась упорядоченная система полостей с расстоянием между центрами двух отверстий 2,5 мкм. Было показано, что нависающая над полостью верхняя молибденовая пленка еще заостряется и может служить автоэлектронным эмиттером.

Первый способ образования неровностей на катодной полости состоит в напылении на нее слоя алюминия толщиной 200 А с последующей термической обработкой. Было показано, что в результате такого процесса на поверхности катодной пленки образуются микровыступы, которые могут использоваться как микроэлектронные автокатоды.

Сущность второго способа состоит в напылении молибдена в затягивающиеся, в результате косого напыления окиси алюминия, отверстий полости. На поверхность молибденовой пленки, вращающейся с постоянной скоростью. Пленка оксида алюминия удаляется в ортофосфорной кислоте. В результате получается:


Рис. 4. Схематическое изображение автоэмиссионного катода

3.1. Энергетическая диаграмма рассматриваемого тонкопленочного катода.


Рис. 5. Энергетическая диаграмма

3.2. Механизм эмиссии заряженных частиц из эмиттера.

Автоэлектронная эмиссия – испускание электронов проводящими твердыми и жидкими телами под действием внешнего электрического поля, достаточно высокой напряженности. Автоэлектронная эмиссия обнаружена в 1897 г. Вудом. В 1929 г. Милликен и Лоритсен установили линейную зависимость логарифма плотности тока j автоэлектронной эмиссии от1/Е вида

(А и В константы). В 1928–29 г. Фаулер и Нордхейм дали теоретическое объяснение автоэлектронной эмиссии на основе туннельного эффекта. Термин автоэлектронная эмиссия отражает отсутствие энергетических затрат на возбуждение электронов, свойственных другим видам электронной эмиссии.

При автоэлектронной эмиссии электроны преодолевают потенциальный барьер на границе эмиттера, не проходя над ним за счет кинетической энергии теплового движения, как при термоэлектронной эмиссии, а путем туннельного просачивания сквозь барьер, сниженный и суженный электрическим полем. В результате увеличивается число электронов, просачивающихся в единицу времени сквозь барьер, увеличивается прозрачность барьера D и плотность тока автоэлектронной эмиссии. Теоретический расчет плотности тока j приводит к формуле

, где n – концентрация электронов в проводнике с
, e – заряд электрона, E – напряженность электрического поля у поверхности эмиттера. Автоэлектронная эмиссия из металлов в вакууме изучена наиболее плотно. В этом случае j следует закону Фаулера – Нордхейма:

, где
,
Ф=е
- работа выхода. t и
табулированные функции аргумента
,
получим: