Смекни!
smekni.com

Электрические контакты (стр. 2 из 3)

Рис. 4. Зависимость износа контактов при замыкании от начального нажатия

Повышение начального нажатия ограничено тяговой характеристикой. Если начальное нажатие превосходит некоторое значение, при котором МДС втягивающей катушки становится недостаточной для деформации тугой пружины и имеет место отброс всей подвижной системы, износ контактов начинает возрастать (штриховая часть кривой на рис. 4).

При большей жесткости отброс контактов будет несколько меньшим,, а следовательно, износ несколько снизится.


2 ДРЕБЕЗГ КОНТАКТОВ И СПОСОБЫ БОРЬБЫ С НИМ

Процесс дребезга при соударении контактов может быть представлен следующим образом. В момент t = 0 произошло соприкосновение контактов (точка А), в цепи появился ток, напряжение на контактах упало до нуля и началось смятие материала и торможение контакта. В точке В подвижный контакт остановился. Началось упругое восстановление материала контактов и обратное движение подвижного контакта.

Если бы материал был абсолютно упругим, то контакт восстановился бы до первоначального, практически же будет наблюдаться некоторая остаточная деформация. В точке С упругое восстановление материала контактов прекратилось, но подвижный контакт по инерции продолжает отходить. Происходит разрыв контактов. Ток в цепи становится равным нулю, напряжение на контактах восстанавливается. Контакт отходит на расстояние xк и под действием контактной пружины снова замыкается (точка D). Происходит повторное смятие материала и его восстановление, и так - несколько раз с затухающей амплитудой. На рис.2 обозначено: хк — амплитуда колебаний контакта; хД — величина упругой деформации; х0 — остаточная деформация.

Рис.2. Дребезг контактов при замыкании

Если хк > хД, то произойдет разрыв цепи со всеми вытекающими последствиями. Такой дребезг является опасным.

Если же xк < хд, то, несмотря на наличие дребезга контактов, разрыва цепи не произойдет, износа контактов не будет. Такой дребезг является неопасным.

Применяемые контактные материалы обладают достаточной упругостью, поэтому даже теоретически избежать дребезга контактов при их замыкании невозможно. В таком случае необходимо конструировать аппараты и их коммутирующие контакты так, чтобы дребезг контактов был неопасным. Амплитуду хк необходимо всемерно снижать. Время дребезга не должно превосходить 0,5—1 мс.

Максимальное значение амплитуды колебаний контакта для поворотной системы с рычажным контактом определяется формулой [4]

(4)

где l — встроенная длина контактной пружины; α0 — первоначальный угол сжатия пружины; k — коэффициент восстановления, характеризующий упругие свойства материала; j — момент инерции подвижного контакта; ω — угловая скорость подвижного контакта в момент удара; c — жесткость пружины. Коэффициент восстановления для некоторых материалов:

Медь..................... ……………..0,95

Латунь …………………………………0,87

Железо.................. …………..…0,75

Поделочная сталь …………………....0,5

Увеличение начального сжатия пружины или, что то же самое, увеличение начального нажатия Pн а также увеличение жесткости с контактной пружины ведут к снижению амплитуды дребезга. При этом большее влияние на амплитуду дребезга оказывает начальное нажатие. Увеличение тягового момента М, так же как и увеличение угловой скорости ω, ведут к повышению амплитуды дребезга.

Таким образом, снижение дребезга контактов при замыкании и получение их замыкания без дребезга могут достигаться за счет увеличения начального нажатия и жесткости пружины, уменьшения массы подвижных контактов и скорости их замыкания.

Для снижения дребезга при замыкании применяют также искусственные меры, основанные главным образом на компенсации отбрасывающих усилий, возникающих при соударении контактов.

Компенсация отбрасывающих усилий может быть осуществлена за счет использования части кинетической энергии всей подвижной системы аппарата, как это показано на рис.5. В момент касания контактов происходит остановка мостикового контакта. Все другие детали подвижной системы стремятся продолжить свое движение и через амортизационную пружину временно создают дополнительное нажатие на мостиковый контакт, препятствуя тем самым его отбросу. При соответствующем подборе параметров системы (масса, жесткость пружин, скорость) можно достигнуть существенного снижения времени дребезга контактов и замыкания без дребезга.

Пример другого способа компенсации отбрасывающих усилий при соударении контактов приведен на рис.6. Здесь между мостиковым контактом и ведущей траверсой помещается вкладыш из специального пористого материала (вроде пористой или губчатой резины). При ударном сжатии в момент касания контактов противодействующие усилия вкладыша весьма велики. Они препятствуют отбросу контактов. Дребезг снижается.

Снижение износа при замыкании может быть достигнуто за счет применения параллельных контактов (рис.7). Здесь многоступенчатой контактной каждым из контактов включается часть системы тока.

Вследствие разновременного размыкания контактов не возникает дуги, что также приводит к снижению износа.

Для снижения и устранения дребезга, вызываемого ударом в магнитной системе, последнюю амортизируют.

Повышению коммутационной износостойкости мостиковых контактов способствует одновременность касания обоих контактов мостика. Достигнуть этого можно при самоустанавливающемся мостиковом контакте. Будучи зажат между двумя сферическими поверхностями, мостиковый контакт после некоторого числа включений принимает положение, при котором достигается одновременное касание контактов.


3. РАБОТА КОНТАКТНЫХ СИСТЕМ, В УСЛОВИЯХ КОРОТКОГО ЗАМЫКАНИЯ

При коротких замыканиях возникают весьма тяжелые условия работы как для разборных, так и для коммутирующих контактов.

В разборных контактах слабым местом оказывается болтовое соединение. Болт, стягивающий детали, практически не проводит тока, и вследствие кратковременности процесса короткого замыкания можно считать, что температура болта не изменяется. Тепловое расширение токоведущих деталей вызовет дополнительное напряжение, которое, складываясь с напряжением затяжки болта, может привести к остаточным деформациям и ослаблению контактного соединения после его остывания. Поэтому болтовые контактные соединения должны проверяться на дополнительные механические напряжения, возникающие в болтовом соединении при коротком замыкании.

Для коммутирующих контактов характерны: а) момент замыкания; б) замк­нутое положение; в) момент размыкания.

При коротких замыканиях возникает опасность сваривания контактов при нахождении их в замкнутом положении (при сквозном токе короткого замы­кания) и тем более в момент замыкания (включение на короткое замыкание).

При коротком замыкании происходит не только резкое увеличение тока, но и увеличение переходного сопротивления контакта из-за ослабления контактного нажатия, вызываемого электродинамическими силами. Тепловая энергия, выделяемая в месте контакта и равная

резко возрастает и может вызвать расплавление и сваривание контактов. На практике вследствие кратковременности коротких замыканий такое явление наблюдается редко. Сваривание замкнутых контактов происходит, как правило, за счет электродинамического отброса, когда электродинамические силы равны контактному нажатию или превосходят его. Возникающая при отбросе контактов дуга вызывает большое оплавление рабочих поверхностей и их сваривание при замыкании.

Для определения минимального тока, при котором происходит сваривание контактов, можно пользоваться следующей опытной формулой:

(2)

где I — допускаемая амплитуда ударного тока, А; P — контактное нажатие, Н; K — коэффициент, зависящий от материала контактов и числа точек соприкосновения (приведен в табл.1).

Таблица 1

Тип контакта Материал К, А/Н0,5
Пакетно-пластинчатый Рычажный (ламельный) Несамоустанавливающийся Рычажный (ламельный) Самоустанавливающийся Розеточный (на один элемент розетки) Медь — латунь Медь — медь Латунь— латунь Медь — латунь Медь — латунь Медь — медь 300—400 410 505 575 550 600

При включении на короткие замыкание вероятность сваривания контактов возрастает как за счет возможного дребезга, так и за счет меньшего нажатия (в момент соприкосновения контактное нажатие равно начальному Pн ).