Смекни!
smekni.com

Механические свойства и методы их определения (стр. 1 из 3)

2 лекция

МАТЕРИАЛОВЕДЕНИЕ

Механические свойства и методы их определения

Механические свойства материалов определяют на специальных образцах.

Наиболее распространенными механическими характеристиками являются: твердость, пределы прочности и упругости, ударная вязкость

Испытания выполняются на раз­рывных машинах с использованием специальных образцов. Деформация может быть упругой или пластической. Упругаядеформация полностью снимается (исчезает) после снятия
нагрузки. Пластическаядеформация не исчезает после снятия нагрузки (согните алюминиевую проволоку, после того как нагрузка снята, проволока не разгибается — она пластически деформирована).

При этом определяются: пределпрочности(sв) — напряжение, при котором происходит разрушение образца

Определение твердости

Твердость характеризует сопротивление материала большим пластическим деформациям.

Наиболее распространенные методы определения твердости связаны с внедрением специального тела, называемого индентором, в испытуемый материал с таким усилием, чтобы в материале остался отпечаток индентора.

Метод Бринелля (НВ)

Вдавливание шарика происходит при постоянной нагрузке, в результате на поверхно­сти образца образуется отпечаток в виде сферической лунки.

Диаметр отпечатка измеряется в двух взаимно перпендикулярных направлениях с помощью микроскопа Бринелля — это лупа со шкалой.

Метод Роквелла

Принципиальное отличие этого метода от рассмотренного ранее заключается в том, что твердость определяется не площадью поверхности отпечатка индентора, а глубиной его проникновения в исследуемый образец.

В качестве индентора используют алмазный конус при испытаниях твердых материалов и стальной закаленный шарик при испытаниях мягких материалов. Значения твердости обозначаются: HRC — алмазный конус, нагрузка 150 кгс; HRA — алмазный конус, нагрузка 60 кгс; HRB — шарик (например, 90 HRA). Шкала по измерению твердости HRC изменена в связи с изменением эталона, поэтому в измеряемые значения следует вносить поправку.

Значения твердости в единицах HRC примерно в 10 раз меньше, чем в единицах НВ, т.е. твердость 30HRC примерно соответ­ствует 300НВ.

Метод Виккерса

Метод основан на вдавливании четырехгранной алмазной пирамидки с углом между противоположными гранями, равным 136°. Твердость (она обозначается HV) определяется отношением нагрузки к площади поверхности отпечатка.

Значения твердости по Бринеллю и Виккерсу практически равны.

Метод Шора.

При измерении твердости по Шору груз вместе с укрепленным на нем индентором (обычно это стальной шарик) падает с высоты на образец перпендикулярно его поверхности. Твердость по Шору определяется по высоте отскока шарика(груз с инден­тором).

Определение ударной вязкости и вязкости разрушения

Для определения ударной вязкости используют образцы с надрезом, который служит концентратором напряжений. Образец устанавливают на маятниковом копре так, чтобы удар маятника происходил против надреза, раскрывая его. Маятник поднимают на высоту, при падении он разрушает образец, поднимаясь на высоту(так как часть запасенной при подъеме работы тратится на разрушение образца).

Ударная вязкость— это относительная работа разрушения, т.е. работа, отнесенная к площади образца до разрушения.
Вязкость разрушения. Более полную информацию о вязкости металлов дают испытания на вязкости разрушения.

КЛАССОФИКАЦИЯ СТАЛЕЙ

Сплавы с содержанием углерода (С) до 2,14% называются сталями.

Стали классифицируются по химическому составу, способу производства, качеству, степени раскисления, назначению, структуре

По хим. Составу стали классифицируются на углеродистые и легированные.
Углеродистые делятся на: низкоуглеродистые – до 0,25% С,
среднеуглеродистые – 0,25-0,6% С,
высокоуглеродистые – более 0,6% С.
По содержанию легирующих элементов делятся:
низколегированные – до 2,5% лиг. эл.,
среднелегированные – 2,5-10% лиг. эл.,
высоколегированные – долее 10% л. э.

По способу производства различают:
конверторные,
мартеновские,
электростали,
стали особым методом выплавки.

По назначению стали классифицируются:
конструкционные,
инструментальные,
строительные,
стали специального назначения с особыми свойствами.

По качеству различают:
обыкновенного качества,
качественные,
высококачественные,
особовысококачественные.
Качество стали зависит от вредных примесей, преимущественно от (серы, фосфора)

Качество углеродистых сталей отражается в маркировки.
Стали обыкновенного качества маркируют буквами Ст (Ст3).
В конце маркировки высококачественных сталей ставится буква А (У10А).

Все легированные стали производят как минимум качественными (10, 20, 45 - % С в 0,00).

Для производства особовысококачественных сталей применяют специальные виды улучшающие обработку, которые могут указываться в маркировках сталей.
ВИ (ВИТ) – переплавка в вакуумных индукционных печах,
ВД (ВДП) – переплавка в вакуумных дуговых печах,
Ш (ЭМП) – электрошлаковый переплав,
ШД – вакуумный дуговой переплав сталей после электрошлакового переплава,
ОДП – обычная дуговая переплавка,
ПДБ – плазменно-дуговая переплавка.

По степени раскисления различают:
спокойную (ст) которая раскислена марганцем. Кремнием и алюминием.
полуспокойную (пс) раскислена марганцем и алюминием.
кипящую (кп) раскисляется марганцем.

В ГОСТах маркировка сталей принято следующее комбинация, чисел и букв.
Первая цифра в маркировки указывает на содержание углерода в стали:
если цифра однозначная то в 0,0%,
если цифра двухзначная то в 0,00%,
если цифра не указана то ~ 1%.
ПРИМЕР 9ХС – 0,9% углерода

Для обозначение легирующих элементов входящих в состав стали каждому из них присвоена своя буква:

Н-никель, Д-медь, А-азот, Х-хром, Р-бор, П-фосфор, К-кобальт, Б-ниобий, М-малибден, Ц-цирконий, Т-титан, Г- марганец, С-кремний, Ф-ванадий, Ю-алюминий, В-вольфрам.

Цифры идущие после букв, указывают среднее содержание данного легирующего элемента в %. Если цифры нет то легирующего элемента ~ 1%.

Пример:
9ХС - 0,9% угл.,1% хрома,1% кремния.
Х12 – 1% угл., 12% хрома.

Степень раскисления сталей обозначается буквами в конце маркировки стали: СП - спокойная, ПС - полуспокойная, КП – кипящая.

Для некоторых сталей употребляется специальное условное обозначение:

Р – быстрорежущая сталь, цифра за которой указывается содержание вольфрама в % (Р18-быстрорежущая сталь с 18% вольфрама),
маркировка шарикоподшипниковых сталей начинается с буквы Ш и последующей цифры указывающей на содержание хрома в 0,0% (ШХ15 – шарикоподшипниковая сталь 1,5% хрома)

Углеродистые стали обыкновенного качества – Ст0, Ст1, Ст2, Ст3, СТ3Г, …- используется для металлоконструкций слабонагруженных.
Углеродистые конструкционные качественные стали – 08, 10, 15, 20, 25, 30, …85 – винты, гайки, болты.
Автоматные стали – А11,А20,А30,АС40 (С - свинец, Е - селен ) изделия не ответственные изготавливаются на автоматах.

Углеродистые инструментальные стали – У7, У8, У9, …У13.
Высококачественные – У7А, …У13А.
Легированные стали –
ст. средней прочности 15ХР,20ХМ и т.п.
ст. повышенной прочности – 12Х2Н3А, 18Х2НМА изготавливают поршневые кольца
Улучшаемые стали – 30Х,40Х, 50Х изготавливают коленчатые валы.
Хромокремнемарганцевые стали – 30ХГСА автомобильное производство.
Хромоникелевые стали – 40ХН шест-ни

Хромоникельмолибденовые стали – 40ХНМА, 38ХНЗМФА изготавливают сильно нагруженные детали.
Высокопрочные стали – 30ХГСНА, 30Х5МСФА.
Рессорно-пружинистые стали – 55С2, 60С2А, 70С3А изготавливают пружины вагонов, автомобильные рессоры.
Шарикоподшипниковые стали – ШХ15, ШХ15СГ изготавливают траки гусеничных танков, крестовины рельс.

Инструментальные стали – 9ХС, ХВГС, ХВ2, ХВ4 изготавливают плашки, протяжки.
Быстрорежущие стали – Р18, Р6М5, 10Р6М5 крупногабаритный инструмент работающий с знакопеременными нагрузками.
Стали специального назначения – 12Х13, 30Х13,12Х18Н10Т изготавливают лопатки турбин, хирургический инструмент.
Жаростойкие стали – 15Х5, 12Х17, 15Х28, 25Х2М1
A используются в котлостроительстве.

Чугун — классификация и маркировка

В зависимости от степени графитизации, обусловливающей вид излома, — на серый, белый и половинчатый (или отбелённый).
В зависимости от формы включений графита — на чугун с пластинчатым, шаровидным (высокопрочный чугун), вермикулярным и хлопьевидным (ковкий чугун) графитом.
в зависимости от характера металлической основы — на перлитный, ферритный, перлитно-ферритный, аустенитный, бейнитный и мартенситный

В зависимости от назначения — на конструкционный и чугун со специальными свойствами; по химическому составу — на легированные и нелегированные.
Серый чугун — наиболее широко применяемый вид чугуна (машиностроение, сантехника, строительные конструкции) имеет высокий коэффициент поглощения колебаний при вибрациях деталей (в 2-4 раза выше, чем у стали).

Белый Чугун представляет собой сплав, в котором избыточный углерод, не находящийся в твёрдом растворе железа, присутствует в связанном состоянии в виде карбидов железа Fe3C (цементит)
Белый чугун вследствие низких механических свойств и хрупкости имеет ограниченное применение для деталей простой конфигурации, работающих в условиях повышенного абразивного износа

Половинчатый чугун содержит часть углерода в свободном состоянии в виде графита, а часть — в связанном в виде карбидовека. Применяется в качестве фрикционного материала, работающего в условиях сухого трения (тормозные колодки), а также для изготовления деталей повышенной износостойкости (прокатные, бумагоделательные, мукомольные валки).