Недостаток энергосберегающих ламп – это использование небольшого количества паров ртути в их производстве. Поэтому нельзя выбрасывать энергосберегающие лампы в мусоропровод и уличные мусорные контейнеры.
Способов правильной утилизации энергосберегающих ламп, к сожалению, немного, но они есть :
1. Перегоревшие люминесцентные лампы нужно отнести в свой районный ДЕЗ или РЭУ, где установлены специальные контейнеры. Там их должны бесплатно принять. Основанием для того, чтобы в ДЕЗе приняли у вас лампы, является Распоряжение правительства Москвы «Об организации работ по сбору, транспортировке и переработке отработанных люминесцентных ламп» от 20 декабря 1999 г. № 1010-РЗП.
2. Если ламп много (например, перегоревшие лампы в офисе, на предприятии), то нужно заключить договор со специализированными организациями, занимающимися приемом и утилизацией ртуть содержащих отходов. Список пунктов приёма перегоревших ламп в разных городах России вы можете найти на сайте Гринпис.
Производители в России энергосберегающих ламп
Международная светотехническая холдинговая компания "В.А.В.С." (Майлуу-Сууйский, Томский, Саранский, Уфимский электроламповые заводы);
ОАО "Калашниковский ЭЛЗ"
Смоленский завод "Свет"
ОАО "Ардатовский СТЗ"
Витебское электротехническое предприятие "Свет"
Ивановское предприятие "Электро"
Торговая марка "КОСМОС"
Завод "Люмсвет"
Компания "НОРДКЛИФФ®"
Корпорация "WESSEN"
Компания "MEGAMAN"
Свойства ртути
Высокая опасность загрязнения помещений и территорий ртутью, а также сложность проблемы демеркуризации во многом обусловливается ее своеобразными физико-химическими свойствами. Как известно, в обычных условиях ртуть представляет собой серебристо-белый тяжелый жидкий металл. Ртуть испаряется при комнатной температуре с довольно высокой скоростью, которая с ростом температуры увеличивается. Это приводит к созданию опасной для живых организмов атмосферы. Пары ртути не имеют ни вкуса, ни запаха; их наличие в воздухе обнаруживается только с помощь специальной аппаратуры. Пары ртути тяжелее воздуха в 7 раз. Однако следует учитывать, что пары ртути не накапливаются в нижних зонах помещений, а распространяются равномерно. Ртуть легко сорбируется из воздуха отделочными и декоративными материалами: тканями, ковровыми и деревянными изделиями и др., откуда она может снова при изменении условий (механическое воздействие, повышение температуры и т.д.) попадать в помещение за счет процесса десорбции. В воздухе ртуть способна находиться не только в форме ее паров, но и в виде летучих органических соединений, а также в составе атмосферной пыли и аэрозолей твердых частиц. Ртуть в высоких концентрациях присутствует в пылевых выбросах различных промышленных предприятий.
Ртуть способна испаряться через слои воды и других жидкостей. В этом контексте представляются неубедительными рекомендации по хранению ртути под слоем воды. Относительно легко ртуть проникает сквозь многие строительные материалы (различные бетоны и растворы, кирпич, строительные плитки, линолеум, мастики, лакокрасочные покрытия и др.). Так, обследование ряда производственных предприятий, в которых длительное время осуществлялись работы со ртутью, а затем «ртутное» производство было прекращено без выполнения мероприятий по очистке помещений от ртути, показало, что содержание ртути в материале стен и пола соответствует количеству ртути в рудах; стены здания поражены ртутью на всю толщину.Тот факт, что ртуть обладает малой вязкостью и высоким поверхностным натяжением, приводит к следующему. Во-первых, при падении или надавливании она распадается на мелкие шарики, что способствует значительному увеличению площади ее испарения. Во-вторых, высокая подвижность этих частиц затрудняет локализацию ртутного пролива и проведение демеркуризации. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Минимальная растворимость наблюдается при рН = 8, с увеличением кислотности или щелочности воды она увеличивается. Ртуть, представляющая собой в свободном состоянии жидкий металл, обладает свойством растворять многие металлы, в том числе благородные, с образованием амальгам. Ртуть весьма агрессивна по отношению к различным конструкционным материалам, ее воздействие может вызывать межкристаллитную коррозию (ртуть является катодом по отношению к большинству металлов), жидкометаллическое охрупчивание что приводит к разрушению производственных объектов и транспортных средств.
Из химических свойств ртути следует отметить высокий потенциал ионизации, т.е. для преобразования паров металлической ртути в соли и другие соединения необходимо использование сильных окислителей или комплексообразователей. Это обусловливает сложность процесса химической демеркуризации. На воздухе ртуть при комнатной температуре не окисляется. В соляной и разбавленной серной кислотах и щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и царской водке, а при нагревании – в концентрированной серной кислоте. Ртуть образует одно-, двухвалентные соединения. Первые из них плохо растворяются в воде; соединения двухвалентной ртути, наоборот, отличаются высокой растворимостью (исключение составляет сернистая ртуть). Соединения ртути в большинстве своем непрочны и разлагаются под влиянием температуры, а некоторые даже под действием света. Ртуть образует многочисленные комплексные соединения как с органическими молекулами, так и с неорганическими ионами. Свойства соединений ртути – способность растворяться в воде и других средах, устойчивость к термическому воздействию - имеют важное значение при выборе средств химической демеркуризации и определении технологии очистки объектов от ртути.
Преимущества и недостатки энергосберегающих ламп
В чем преимущества и недостатки энергосберегающих ламп, по сравнению с традиционными лампами накаливания?
Нашу жизнь невозможно представить без искусственного освещения. Конструкции квартир, домов, помещений и офисных зданий предполагают наличие искусственного освещения. Для жизни и работы людям просто необходимо освещение с применением ламп.
По традиции мы для освещения своих квартир применяем обычные лампочки накаливания. В зависимости от потребностей необходимого освещения используем различные мощности этих ламп – 40 Вт, 60 Вт, 100 Вт.
Но из школьного курса физики известно, что коэффициент полезного действия в традиционных лампочках накаливания очень мал, и в лучшем случае достигает 50%. Из чего следует, что из той электроэнергии потребляемой лампами накаливания, за которую мы заплатили, только половина пошла на реальное освещение квартиры или помещения. Вторая половина потраченной электроэнергии потрачена на нагрев данной лампочки накаливания.
Технический прогресс не стоит на месте, и терпеть такое расточительство традиционных ламп накаливания современные изобретатели не могли. На смену старой лампе накаливания пришла новая лампа – комплексная люминесцентная лампа (КХЛ) или энергосберегающая лампа.
В чем принципиальное отличие энергосберегающей лампы от лампы накаливания?
С устройством лампы накаливания знакомы многие. Под действием электрического тока вольфрамовая нить в лампочке раскаляется до яркого свечения. Но не все знают, как устроена энергосберегающая лампа.
Энергосберегающие лампы состоят из колбы, наполненной порами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Люминофор, это такое вещество, при воздействии на которое ультрафиолетовым излучением, начинает излучать видимый свет. Когда мы включаем энергосберегающую лампочку, под действием электромагнитного излучения, поры ртути, содержащиеся в лампе, начинают создавать ультрафиолетовое излучение, а ультрафиолетовое излучение, в свою очередь, проходя через люминофор, нанесенный на поверхность лампы, преобразуется в видимый свет.
Люминофор может иметь различные оттенки, и как результат, может создавать разные цвета светового потока. Конструкции существующих энергосберегающих ламп делают под существующие стандартные размеры традиционных ламп накаливания. Диаметр цоколя у таких ламп составляет 14 или 27 мм. Благодаря чему вы можете использовать энергосберегающие лампы в любом светильнике, бра или люстре, для которых вы раньше применяли лампу накаливания.
Преимущества энергосберегающих ламп
Экономия электроэнергии. Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания. Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.
Долгий срок службы. По сравнению с традиционными лампами накаливания, энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в среднем 5-15 раз. Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется производителем и указывается на упаковке). Благодаря тому, что энергосберегающие лампы служат долго и не требуют частой замены, их очень удобно применять в тех местах, где затруднен процесс замены лампочек, например в помещениях с высокими потолками или в люстрах со сложными конструкциями, где для замены лампочки приходится разбирать корпус самой люстры.