Смекни!
smekni.com

Германієвий дрейфовий транзистор (стр. 1 из 4)

Міністерство освіти і науки України

Вінницький національний технічний університет

Інститут автоматики, електроніки та комп’ютерних систем управління

Факультет ФЕЛТ

Кафедра електроніки

Германієвий дрейфовий транзистор

(n-p-n)

Курсова робота

з дисципліни “Твердотіла електроніка”

Керівник, асистент ____________________ Мельничук О.М.

Студент. гр. ЕП-07 ____________________ Богачов Ю.Ю.

2009

Зміст

Технічне завдання

Анотація

Вступ……………………………………………………………………

1. Аналіз стану питання………………………………………………..

2. Фізика роботи………………………………………………………..

2.1 Принцип дії та основні параметри.............................................

2.2 Вплив режимів роботи на параметри транзисторів..................

2.3 Представлення транзистора у вигляді чотириполюсника........

3. Методика розрахунку.........................................................................

4. Технологія виготовлення....................................................................

Висновки..................................................................................................

Література................................................................................................

Додатки....................................................................................................

АНОТАЦІЯ

В даній курсовій роботі розглянуто принцип роботи n-p-n транзистора; проведено розрахунок електричних параметрів, максимальної робочої частоти, знаходження вихідних характеристик, передаточної характеристики та її крутизну в області насичення за заданими розмірами; до кожного розрахунку розроблено програму мовою програмування Delphi 6.0; проведено тепловий розрахунок транзистора.

ВСТУП

Бурхливий розвиток напівпровідникової електроніки почалося наприкінці 50-х років. В даний час без напівпровідникової електроніки немислиме освоєння космосу й океанських глибин, атомна і сонячна енергетика, радіомовлення і зв'язок, комп'ютеризація й автоматизація, дослідження живих організмів.

Напівпровідникова електроніка вивчається у декількох курсах: фізика напівпровідників, фізика напівпровідникових приладів, мікроелектроніка, технологія напівпровідникових приладів і інтегральних мікросхем. Курс фізики напівпровідникових приладів є власне кажучи фізичною основою мікроелектроніки і поділ між дискретними приладами і мікроелектронікою дуже умовний.

В перші роки свого розвитку інтегральні мікросхеми складалися з ізольованих дискретних елементів, створюваних в одному кристалі і з'єднувальних металевих смужках по поверхні. Їхній сучасний розвиток характеризується використанням об'ємних зв'язків, при яких елементи мають загальну базу і сигнал передається шляхом переносу носіїв заряду з бази одного елемента в базу іншого. Ланцюг елементів із загальною базою вже не можна представити у виді дискретних приладів, а необхідно розглядати як єдиний напівпровідниковий прилад, що виконує функції цілої схеми з дискретних елементів.

Біполярний транзистор - основний напівпровідниковий прилад, що служить для підсилення, генерування, збереження і передачі інформації не тільки в інтегральних схемах, але й в інших пристроях електроніки. Транзистор був винайдений у 1947 р. Теоретичні основи його роботи були опу­бліковані Шоклі в 1949 р. При наступному розвитку теорії транзисторів розроблялися питання підвищення робочих частот, потужності, поводжен­ня транзисторів у режимах перемикання. Одночасно з розвитком теорети­чних основ швидко удосконалювалася технологія виробництва транзисто­рів, що дозволило збільшити потужність, поліпшити частотні властивості, підвищити їхню надійність. Крім того, дослідження в області фізики на­півпровідників, теорії і технології транзисторів не тільки сприяли розвитку інших напівпровідникових приладів, але і допомогли створенню новітньої технології інтегральних схем.

Біполярні транзистори використовуються в космічних апаратах, обчис­лювальних машинах, засобах зв'язку в пристроях автоматики, оптоелект­роніки й інших галузях.

Фундамент сучасної радіоелектронної апаратури складають великі і над великі інтегральні схеми, при цьому основним елементом інтегральних схем є транзистор. Тому вивчення фізичних процесів, які відбуваються в транзисторних структурах дає можливість зрозуміти роботу транзисторів, правильно їх конструювати і застосовувати на практиці [1].

Темою курсової роботи є дрейфовий германієвий n-p-n транзистор.

Метою даної курсової роботи є дослідження фізичних процесів та роботи дрейфового германієвого n-p-n транзистора, визначення основних теоретичних залежностей, які показують зв'язок головних характеристик приладів з електрофізичними параметрами напівпровідникових матеріалів.

1 АНАЛІЗ СТАНУ ПИТАННЯ

ТРАНЗИСТОР — напівпровідниковий прилад, призначений для посилення електричного струму і керування ним. Транзистори випускаються у виді дискретних компонентів в індивідуальних корпусах або у виді активних елементів так званих інтегральних схем, де їхні розміри не перевищують 0,025 мм. У зв'язку з тим що транзистори дуже легко пристосовувати до різних умов застосування, вони майже цілком замінили електронні лампи. На основі транзисторів і їхніх застосувань виросла широка галузь промисловості – напівпровідникова електроніка [2].

Одне з перших промислових застосувань транзистор знайшов на телефонних комутаційних станціях. Сьогодні транзистори і багатотранзисторні інтегральні схеми використовуються в радіоприймачах, телевізорах, магнітофонах, дитячих іграшках, кишенькових калькуляторах, системах пожежної й охоронної сигналізації, ігрових телеприставках і регуляторах усіх видів – від регуляторів світла до регуляторів потужності на локомотивах і у важкій промисловості. В даний час «транзисторизовані» системи вприскування палива і запалювання, системи регулювання і керування, фотоапарати і цифрові годинники. Найбільші зміни транзистор зробив, мабуть, у системах обробки даних і системах зв'язку – від телефонних підстанцій до великих ЕОМ і центральних АТС. Космічні польоти були б практично неможливі без транзисторів. В області оборони і військової справи без транзисторів не можуть обходитися комп'ютери, системи передачі цифрової даних, системи керування і наведення, радіолокаційні системи, системи зв'язку і різноманітне інше устаткування. У сучасних системах наземного і повітряного спостереження, у ракетних військах – усюди застосовуються напівпровідникові компоненти. Перелік видів застосування транзисторів майже нескінченний і продовжує збільшуватися.

У 1954 було зроблено не набагато більше 1 млн. транзисторів. Зараз цю цифру неможливо навіть вказати. Спочатку транзистори коштували дуже дорого, зараз ціни набагато менші.

В наш час існують потужні транзистори розміром як сірникова коробка, що можуть працювати при напругах до тисячі вольт при струмах десятки ампер і на противагу таким пристроям існують великі гібридні інтегральні схеми в яких сотні тисяч біполярних транзисторів можуть міститися на одній підкладці площею 1 см2.

Будуть і далі удосконалюватися й усе ширше застосовуватися такі методи, як іонна імплантація. Розшириться застосування інтерметалічних з'єднань. Транзистори в інтегральних схемах зменшаться в розмірах, стануть більш швидкодіючими, будуть споживати менше потужності. Розвиток транзисторної техніки піде по двох напрямках: будуть нарощуватися робоча потужність і робоча напруга дискретних транзисторів. В області низьких рівнів потужності все більшу роль будуть грати інтегральні схеми. Ціни на них будуть і далі знижуватися. Буде усе більше розширюватися коло застосування інтегральних схем у логічних пристроях, системах контролю і керування, системах обробки інформації для всіх аспектів життя людини і суспільства. У 1960 минулому вперше створені інтегральні схеми усього лише з декількома біполярними транзисторами на мікрокристал. У 1976 ступінь інтеграції перевищила чверть мільйона. ДО 1980 цей показник досяг майже мільйона, а в 2000 наблизився до 10 млн.

2 ФІЗИКА РОБОТИ

2.1 Принцип дії та основні параметри

Біполярні транзистори працюють на основі використання носіїв обох знаків — електронів і дірок, внаслідок чого вони й одержали таку назву. Транзистор р-n-р-типу (мал. 2.1,a) складається з двох р-п-перехідів із загальною базою. Один р-n-перехід включається в прямому напрямку і інжектує у базу дірки, він називається емітером, другий називається колектором, тому що він включається в зворотному напрямку і збирає інжектовані емітером дірки.

При відключеному емітері струм колектора IКБ0 = Інас — зворотному струму n-p- перехіду. Якщо емітер включити в прямому напрямку, то інжектовані їм дірки проходять через базу і збільшують струм колекторного переходу. Частина дірок рекомбінує в об’ємі бази і на її поверхні. Для зменшення цих втрат ширина бази W повинна бути багато менша дифузійної довжини дірок Lр.

Рис. 1. Структура n-p-n транзистора

Енергетична структура n-p-n транзыстора

Емітерний n-p- перехід з базою за таких умов не відрізняється від n-p- переходу з тонкою базою при sК=¥, тому що електричне поле колекторного n-p- переходу швидко переносить дірки в колектор і рб(x=W)=0. Відповідно вольтамперна характеристика описується формулою