Задание по курсовой работе
Условия расчёта:
Средне-экономическую точность обработки деталей (звеньев размерной цепи) принять по IT 11.
При расчёте вероятностным методом принять для всех составляющих звеньев размерной цепи
Расчёт параметров замыкающего звена
;
;
Составление схемы размерной цепи
А1 АΔ А10 А9 А8 А7 А6 А5
Уравнение номинальных размеров
АΔ= – А1 + А2 + А3 + А4 – А5 – А6 – А7 – А8 – А9 – А10
Обозначение сост. звена р.ц. | Наимен.дет. по спецификации | Звено отнесено к отв. или валу | Передаточное отношение ξ | Ном. размеры и допуски станд. элементовмм. | Расчётн. разм. по вариантумм. | Ном. разм. округ. по ГОСТ 6636-69.мм. | Единица допуска.мкм. | |
| Замыкающее звено | | ||||||
| Крышка глухая | Отверстие | -1 | 22 | 21 | 1,31 | ||
| Прокладка | Вал | +1 | 0 | ||||
| Корпус редуктора | Вал | +1 | 176 | 150 | 2,52 | ||
| Прокладка | Вал | +1 | 0 | ||||
| Крышка глухая | Отверстие | -1 | 22 | 16 | 1,31 | ||
| Подшипник | Вал | -1 | | 1,31 | |||
| Стопорное кольцо | Вал | -1 | 10 | 0,9 | |||
| Зубчатое колесо | Вал | -1 | 29 | 28 | 1,31 | ||
А9= l7 | Вал | Вал | -1 | 59 | 56 | 1,86 | ||
| Подшипник | Вал | -1 | | 1,31 |
Решение прямой задачи методом полной взаимозаменяемости
(расчёт на максимум-минимум)
Решение уравнений номинальных размеров.
Примем в соответствии с требованиями ГОСТ 6636-69 стандартное значение
Тогда:
АΔ= – 22 + 180 – 22 – 10 – 28 – 56 – 21 – 21 = 0;
Расчёт допусков составляющих звеньев размерной цепи.
Определим квалитет одинаковый для всех составляющих звеньев:
Принимаем квалитет IT6 для которого К = 10.
Назначаем допуски на все звенья (кроме А7,принимаемого в качестве специального звена) по IT6.
Тогда:
ТА1 = 0,013
ТА3 = 0,025
ТА5 = 0,013
ТА6 = 0,12 (задан)
ТА8 = 0,013
ТА9 = 0,019
ТА10 = 0,12 (задан)
ТА7 = ТАсп
Определяем расчетный допуск на специальное звено:
Стандартный ближайший допуск
Определение предельных отклонений.
Назначаем предельные отклонения на все размеры (кроме
А1 = 22+0,013
А3 = 180–0,025
А5 = 22+0,013
А6 = 21+0,120
А7 = Асп
А8 = 28–0,013
А9 = 56–0,019
А10 = 21+0,120
Определяем координату середины поля допуска специального звена:
Определяем предельные отклонения специального звена:
Подбираем ближайшее стандартное значение основного отклонения спецзвена. Принимаем
Проверим правильность решения прямой задачи:
Таким образом,
Данный вариант не удовлетворяет условию EIAΔ≥EIAΔзад, возможен натяг. Поэтому возьмем новое специальное звено А3
А1 = 22+0,013
А3 = 180; ТА3 = 0,025
А5 = 22+0,013
А6 = 21+0,120
А7 = 10
А8 = 28–0,013
А9 = 56–0,019
А10 = 21+0,120
Определяем предельные отклонения специального звена
Подбираем ближайшее стандартное значение основного отклонения спецзвена. Принимаем
Проверим правильность решения прямой задачи:
Таким образом,
Проверка показала, что прямая задача решена правильно, так как составляющие звенья А1=22+0,013; А2=0; А3=180