Смекни!
smekni.com

Изменение СЭУ С. Есенин (стр. 5 из 9)

V. Расчет и выбор котла-утилизатора на ДГ.

Необходимо произвести расчет получаемой теплоты от отработанных газов при работе ДГ на 50% нагрузке ( согласно вахтенному журналу ) :

Q о.г. = 0,5 × Ne × gг × cp × ( t1 – t2 ) × hт , где

0,5 – коэффициент учитывающий 50% нагрузку ДГ ;

Ne – эффективная мощность ДГ ( кВт ) ;

gг – удельная масса газов на выходе из ДГ ( 6 – 7 кг/кВт × ч ) ;

cp – массовая теплоемкость газов ( 1,05 – 1,13 кДж/кг × ч ) ;

t1 – температура газов на входе в УК ( на 10оС ниже температуры газов на выходе из ДГ ) ;

t2 – температура газов на выходе из УК ( для водогрейного 185 – 215 оС ) ;

hт – коэффициент потери теплоты в окружающую среду ( 0,95 ) ;

Q о.г. = 0,5 × 330 × 6 × 1,05 × ( 510 – 380 ) × 0,95 = 158.195,75 кДж/ч

Исходя из полученного количества теплоты :

1. необходимо выбрать и установить котел-утилизатор на газоходы всех трех ДГ, путем соединения их ( газоходов ) в конструкцию, принципиальная схема которой отражена на чертеже №6 / при этом используется регуляторная пневматическая заслонка для введения утиль-котла в работу от какого-либо газохода / ;

2. Модернизировать систему радиаторного отопления так, чтобы ее можно было отключить от общей тепловой централи потребителей горячей воды и замкнуть на контур котла-утилизатора ДГ. Так как один из ДГ во время зимней стоянки все время работает, а система радиаторного отопления будет работь от собственного циркуляционного насоса ( расчет см. ниже ), то данный вариант может быть использован.

1. По полученному значению выбираем водогрейный утилизационный котел марки КАУ – 4,5 со следующими техническими характеристиками :

Рабочее давление : Р = 0,2 МПа ;

Поверхность нагрева : Нк = 4,5 м2 ;

Теплопроизводительность : Qк = 170.000 кДж / ч ;

Температура воды на выходе : t = 95 оС ;

Масса котла с водой : 460 кг ;

Габариты котла : d = 0,75 м – диаметр котла ;

h = 2,4 м – высота котла ;

2. Для модернизации системы радиаторного отопления нужно произвести гидравлический расчет трубопроводов и по полученному значению напора выбрать насос горячей воды. Тогда при задействовании утилизационного котла любого из дизель-генераторов снабжение горячей водой всех потребителей на судне производится автономным котлом КВ 1,6 / 5 , а системы радиаторного отопления ( после переключения соответствующих вентелей ) этим утиль-котлом КАУ – 4,5 .

VI. Гидравлический расчет трубопроводов радиаторного отопления.

Принципиальная схема переключения трубопроводов отражена на чертеже №5 данного дипломного проекта.

Гидравлический расчет производится для самого дальнего секционного радиатора, чтобы определить максимальные потери в трубопроводах и выбрать центробежный насос с соответствующим напором. Значение подачи насоса не меняется, т.к. не меняется диаметр трубопровода, а изменяется только его длина ( потери на трение ) и увеличиваются местные потери.

Вывод

VII. Определение дополнительной необходимой поверхности теплосъема для использования теплоты полученной во вновь устанавливаемом автономном паровом котле.

Варианты :

1. Установить в климатцентры дополнительные теплообменные батареи.

2. Установить дополнительные теплообменные батареи в зональные каналы.

3. Использовать батареи охлаждения в климатцентрах в качестве батарей нагрева.

Из всех возможных вариантов, самым реальным и целесообразным является вариант 3. Произведем проверочный расчет :

Теплообменники холодной и горячей воды в климацентрах имеют совершенно одинаковые технические характеристики, т.е. :

поверхность теплосъема : F = 34, 55 м2 ;

коэффициент теплопередачи : к = 81,3 кДж / м2 × час × оС ;

Всего во всей системе кондиционирования установлено 7 батарей предварительного нагрева ( БПН ) , 22 батареи дополнительного нагрева ( БДН ) и 7 батарей охлаждения ( БО ).

Расчитаем, сколько передавалось теплоты через БПН ( значения берем до замены котла ) :

Q = к × F × ( t1 – t2 ) = 154.490,32 кДж / ч ;

где : t1 = 90 оС – температура на входе в теплообменник ;

t2 = 40 оС – температура на выходе из теплообменника ;

Общее количество теплоты со всех 7 теплообменников : Q7 = 1.081.432,275 кДж / ч ;

Т.к. общее количество теплоты для системы кондиционирования было: 1.511.622кДж/ч то через БДН передавалось 430.189,725 кДж / ч ;

Отсюда, можно сделать вывод : если при замене автономного котла количество теплоты получаемой для системы кондиционирования увеличилось на 660.804 кДж/ч , и при задействовании БО в качестве дополнительных теплообменников ( батарей дополнительного нагрева ( БДН )), которые в свою очередь способны передать через себя 1.081.432,275 кДж / ч , то никакого специального расчета теплового баланса делать необязательно. Единственное, что нужно сделать это модернизировать систему трубопроводов горячей и холодной воды в климацентрах так, чтобы во время навигации БПН и БДН работали в системе горячей воды и БО – в системе холодной воды, а во время зимней стоянки БПН, БДН и БО работали в системе горячей воды. Принципиальная схема соединения трубопроводов и установки арматуры отражена в чертеже № 1 данного дипломного проекта.

VIII. Гидравлический расчет системы горячей воды системы кондиционирования

Вывод

IX . Охрана труда.

К неблагоприятным факторам в машинном отделении, оказывающим вредное воздействие на персонал, относятся недостаточная освещенность, опасность поражения электрическим током, шум, вибрация и повышенная температура воздуха, а также его загазованность.

К основным источникам шума и вибрации на судах относят главные двигатели, дизель-генераторы, движительно-рулевой комплекс систему вентиляции.

Главные двигатели 6VD 18/15 Al-1 имеют форсированный режим работы, а следовательно, высокий уровень шума. Для уменьшения вредного воздействия шума на членов экипажа, обслуживающих СЭУ, на двигателях применяются средства дистанционного управления и комплексной автоматизации. Кроме того, контроль за работой главных и вспомогательных двигателей осуществляется с центрального поста управления, имеющего специальную звукоизоляцию. Обслуживание и ремонт главных и вспомогательных двигателей во время работы производится в специальных наушниках.

Для снижения уровня шума и вибрации от главных двигателей, дизель-генераторов и компрессоров, расположенных в машинном отделении, предусмотрена их установка на резиново-металлические виброизоляторы в районе опорных поверхностей. Средства виброизоляции и вибропоглощения снижают структурную составляющую шума в смежных помещениях. Эти средства обеспечивают снижение уровней звукового давления на 20-25 дБ почти во всем диапазоне частот.

Одним из источников шума в машинном отделении является система вентиляции. Средствами снижения шума от этой системы являются : ограничение скоростей движения воздуха по воздуховодам, установка воздухораспределителей с обтекаемыми кромками, не создающими шума при истечении из них воздуха, установка глушителей шума.

В соответствии с ГОСТ 12.0.033-74 опасные факторы классифицируются следующим образом : физические, химические, психофизиологические. Они проявляются при нарушении технологических процессов, неудовлетворительной организации работ, неиспользовании средств индивидуальной защиты.

В целях устранения влияния опасных факторов на судах проекта Q-065 предусмотрены различные мероприятия. Сильно нагретые поверхности ( выхлопные трубы двигателей, котлов, установки инсенератора, выпускные коллекторы дизелей ) защищены теплоизоляцией и специальными экранами. В данном дипломном проекте при замене водогрейного котла на паровой возникает необходимость специального инструктажа машинной команды и повышенного внимания вахтенного персонала при работе парового котла, его ослуживания и ремонта. Открытые движущиеся части механизмов закрываются кожухами, окрашенными в оранжевый цвет. Трубопроводы различных систем имеют соответствующую маркировку. Для защиты персонала, обслуживающего СЭУ, от поражения электрическим током применяются защитное заземление, резиновые коврики и средства индивидуальной защиты ( диэлектрические перчатки, калоши, специальный инструмент и т.п. ). Помещения с повышенной загазованностью ( инсенераторная ) и содержанием опасных испарений ( аккумуляторная, машинное отделение, помещение вакуум.баллона и др. ) имеют приточную и вытяжную вентиляцию. Персонал, обслуживающий СЭУ, приступает к выполнению работ в специальной одежде и после соответствующего инструктажа.

I). Анализ вибрации в кормовой части судна.

В процессе эксплуатации судов проекта Q-065 в ходовом режиме со 100% приводной мощностью отмечается повышенная вибрация в кормовой части. Повышение вибрации приводит к повышению шума, созданию эксплуатационных трудностей ( например, к самопроизвольному закрытию вентиляционного “грибка” системы вентиляции румпельного помещения ), появляется опасность снижения прочности сварных соединений набора корпуса и обшивки. Повышенная вибрация ( связанный с ней шум ) оказывают вредное влияние на здоровье людей, работающих в помещениях кормовой части судна и на палубе. Кроме того, необходимо учитывать, что со временем вибрация, как правило, возрастает. В связи с выше сказанным представляется целесообразным разработать меры по снижению вибрации в кормовой части судов проекта Q-065. Так как за время эксплуатации судов данного проекта в Московском Речном пароходстве замеры вибрации не проводились, мы вынуждены использовать замеры, сделанные судостроительной верфью «Корнойбург» ( Австрия ) во время испытаний головного судна «Сергей Есенин». Испытания проводились 11.01.84г. в водохранилище Альтенверт-Кремс в соответствии с программой верфи. Анализ результатов замеров вибрации показывает, что полученные параметры соответствуют, в основном, результатам предварительного расчета требованиям санитарных правил для речных и озерных судов СССР и Правилам Речного Регистра РСФСР. Однако, имеются исключения. Первым исключением является точка замера 7 ( см. Отчет по замерам т/х «Сергей Есенин» ) – ресторан, расположенный в кормовой части судна. Замер на одном из столов показал, что в диапозоне частот 16 – 32 Гц было отмечено превышение уровня виброскорости на 6 дБ. Это на 7,8% больше максимального уровня виброскорости, установленного Санитарными правилами и равного для диапозонов частот 16 и 32 Гц 78 и 77 дБ соответственно. Вторым исключением является точка замера 14 – музыкальный салон, расположенный в носовой части судна на шлюпочной палубе. Замер на одном из кресел показал превышение уровня виброскорости, допускаемого Санитарными правилами, на 3 дБ в диапозоне частот 4 Гц. Замеры в наиболее неблагоприятной точке 1, находящейся в районе гребного винта показали уровень виброскорости 84 дБ, что соответствует ускорению 4,76 м / с2 . Для пассажирских судов 1 группы максимально допускаемое ускорение общей вибрации 1 м / с2 . Из приведенного анализа видно, что вибрация в кормовой части судов проекта Q-065 превышает допустимые параметры. Параметры вибрации непосредственно зависят от массы и геометрических размеров вибрирующих тел, т.е. F = f ( m ; ri ) , где : m – масса тела ; ri – радиус инерции тела. В связи с этим существуют следующие пути снижения вибрации :