Но временная асимметрия - это реальный факт. Упорядоченность реальных систем может возникать за счет внешних воздействий, а не за счет внутренних беспорядочных флуктуаций (дом, например, воздвигается строителями, а не в результате внутренних хаотических движений). В реальности все системы формируются под воздействием окружающей среды. Для различения реальных систем, которые, отделясь от окружающей Вселенной, приходят в состояние с низкой энтропией, и больцмановских постоянно изолированных от окружающей среды систем, Г.Рейхенбах назвал первые ветвящимися структурами - в их иерархии упорядоченность каждой зависит от предыдущей. Ветвящаяся структура ведет себя асимметрично во времени по причине скрытого воздействия извне. При этом причина асимметрии - не в самой системе, а в воздействии. В реальном мире больцмановских систем нет.
Асимметричные во времени процессы существуют и в областях за пределами термодинамики. Примером таких процессов могут служить волны (в том числе радиоволны). Так, радиоволны распространяются от передатчика в окружающее пространство, но не наоборот. Аналогично обстоит дело с распространением волн от брошенного в пруд камня. Волны, бегущие от источника (предположим, брошенного в пруд камня) в разные стороны, называют запаздывающими. В принципе возможны и опережающие волны, которые могут возникнуть тогда, когда возмущения сначала проходят через удаленную точку, а затем сходятся в месте распространения источника волны. Изолированный пруд есть симметричная во времени система, как и больцмановский сосуд с газом. Брошенный в него камень создает ветвящуюся структуру. Радиоволна же обратно не вернется, ибо распространяется в безграничном пространстве. Здесь мы имеем дело с неограниченной диссипацией (рассеянием) волн и частиц, являющей собой еще один тип необратимой временной асимметрии. Значит, образование ветвящихся структур и необратимая асимметрия бесконечного волнового движения делают необходимым учет крупномасштабных свойств Вселенной.
Таким образом, дискуссия по поводу второго начала термодинамики привела к выводу, что законы микромира ситуацию с "демоном Максвелла" делают неосуществимой, но вместе с тем она способствовала уяснению того, что второе начало термодинамики является законом статистическим.
г) Третье начало термодинамики (теорема Нернста) : энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной. Другие формулировки теоремы: при стремлении температуры к абсолютному нулю все изменения состояния системы не изменяют ее энтропии; при помощи конечной последовательности термодинамических процессов нельзя достичь температуры абсолютного нуля. М.Планк дополнил теорему гипотезой, согласно которой энтропия всех тел при абсолютном нуле температуры равна нулю. Из теоремы вытекают важные следствия о свойствах веществ при температурах, близких к абсолютному нулю: приобретают нулевое значение удельные теплоемкости при постоянных объеме и давлении, термический коэффициент расширения и давления. Кроме того, из теоремы следует недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов.
Если первое начало термодинамики утверждает, что теплота есть форма энергии, измеряемая механической мерой, и невозможность вечного двигателя первого рода, то второе начало термодинамики объявляет невозможным создание вечного двигателя второго рода. Первое начало ввело функцию состояния - энергию, второе начало ввело функцию состояния - энтропию. Если энергия закрытой системы остается неизменной, то энтропия этой системы, состоящая из энтропий ее частей, при каждом изменении увеличивается - уменьшение энтропии считается противоречащим законам природы. Сосуществование таких независимых друг от друга функций состояния, как энергия и энтропия, дает возможность делать высказывания о тепловом поведении тел на основе математического анализа. Поскольку обе функции состояния вычислялись лишь по отношению к произвольно выбранному начальному состоянию, определения энергии и энтропии не были совершенными. Третье начало термодинамики позволило устранить этот недостаток. Важное значение для развития термодинамики имели установленные Ж.Л.Гей-Люссаком законы - закон теплового расширения и закон объемных отношений. Б.Клапейрон установил зависимость между физическими величинами, определяющими состояние идеального газа (давлением, объемом и температурой), обобщенное Д.И.Менделеевым.
Таким образом, концепции классической Термодинамики описывают состояния теплового равновесия и равновесные (протекающие бесконечно медленно, поэтому время в основные уравнения не входит) процессы. Термодинамика неравновесных процессов возникает позднее - в 30-х гг. ХХ века. В ней состояние системы определяется через плотность, давление, температуру и другие локальные термодинамические параметры, которые рассматриваются как функции координат и времени. Уравнения неравновесной термодинамики описывают состояние системы во времени.
Возникновение предпосылок атомной и ядерной физики
Концепции атомной и ядерной физики будут развертываться в ХХ столетии, но события, давшие им толчок, произошли в конце XIX столетия. На стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, основанным на классической механике, суждено было уступить место новой, остающейся до сих пор во многом не завершенной картине мира. События, положившие начало процессу смены картины мира, связаны с открытием рентгеновских лучей и радиоактивности (1895-1896 гг.), открытием электрона (1897 г.), структуры кристалла (1912 г.), нейтрона (1932 г.), деления ядра атома (1938 г.) и т.д., а также с теоретическими работами: квантовой теорией М.Планка (1900 г.), специальной теорией относительности А.Эйнштейна (1905 г.), атомной теорией Резерфорда - Н.Бора (1913 г.), общей теорией относительности А.Эйнштейна (1916 г.), волновой механики Л.де Бройля и Э.Шредингера (1923-1926 гг.) и т.д. Поскольку в основу изложения развития физических концепций был положен и хронологический принцип, то и научные открытия, происшедшие в конце XIX столетия (хотя главные события, последующие за ними, будут происходить уже в ХХ столетии), целесообразно рассмотреть в русле развития физики конца XIX столетия.
Конец XIX века демонстрировал наличие теории, удовлетворяющей практическим потребностям. Явления электромагнетизма использовались в осветительных и силовых устройствах. Термодинамические концепции привели к созданию двигателя внутреннего сгорания и химических установок, Электромагнитная теория вызвала к жизни радио. Эти достижения были практической реализацией утвердившихся научных знаний, от которых трудно было ожидать чего-то принципиально нового. Так что радикальные сдвиги следовало ожидать в тех областях физики, которые до сих пор находились в тени и в которых наблюдались какие-то явления, не укладывавшиеся в существующие физические концепции. Область физики, занимавшаяся изучением электрических разрядов, оказалась именно такой. Однако проводившиеся с электрическими разрядами в вакууме опыты привели к интересным результатам, а электротехническая промышленность обнаружила потребность в совершенствовании вакуумной техники. Все это усилило интерес к исследованиям в этой области физики.
Первым результатом усиления этого интереса было открытие У.Круксом катодных лучей, которые он назвал лучистой формой материи. Д.Стоней назвал катодные лучи электронами, Ж.Перрен обнаружил у них отрицательный заряд, а Д.Томсон измерил их скорость. Следующим шагом было совершено непредвиденное открытие К.Рентгеном - обнаружение Х-лучей (получивших название рентгеновских), исходивших из катодно-лучевой разрядной трубки. Это открытие, помимо практических перспектив, имело важное значение для других областей физики. Д.Томсон установил, что не только электроны, которые ударялись о какое-либо вещество, порождали рентгеновские лучи, но и последние при ударе о вещество порождают электроны. Тот факт, что электроны могли извлекаться из различных веществ, свидетельствовало о принадлежности их к электрической материи. Поскольку она состояла из отдельных частиц (атомов), то это побудило Д.Томсона обратиться к раскрытию внутренней структуры атома. Существование электрона - заряженной частицы с массой. которая меньше массы атома и которая появляется из вещества при определенных условиях, наводила на мысль о том, что эта частица является структурным элементом атома. А если атом электрически нейтрален, то должен быть структурный элемент и с положительным зарядом.
Первая модель атома, предложенная В.Томсоном и затем Д.Томсоном, включала шарообразное облако положительного заряда, внутри которого находятся электроны, расположенные в этом облаке концентрическими кольцами. Данная модель просуществовала недолго. Но это был первый шаг в раскрытии структуры атома. Следующие модели атома появились уже в ХХ веке (модель Э.Резерфорда и модель Н.Бора).
Открытие рентгеновских лучей было случайным. Открытие радиоактивности, последовавшее вслед за открытием рентгеновских лучей, также оказалось случайным. А.Беккерель пытался установить, не излучаются ли подобные лучи другими телами. Из различных веществ, которыми он располагал, Беккерель случайно избрал соли урана. лучи, исходящие из урана, были радиоактивными, причем получались без каких-либо устройств - они испускались самим радиоактивным веществом. Пьер и Мария Кюри выделили еще более сильные радиоактивные элементы - полоний и радий. Э.Резерфорд, изучая характер радиоактивного излучения, открывает альфа-лучи и бета-лучи и объясняет их природу. М.Планк установил. что атомы отдают энергию не непрерывно, а порциями, т.е. существование предельного количества действия, контролировавшего количественно все энергетические обмены в атомных системах (постоянная Планка - h, равная 6,6×10-27 эрг/сек. К.Лоренц создает электронную теорию, синтезировавшую идеи теории поля атомной теории. И хотя первоначально он не употребляет термина "электрон", а говорит о положительно и отрицательно заряженных частицах вещества. открытие радиоактивности и превращения атомов поколебало физические и химические представления XIX века. Это касалось закона неизменных элементов, установленного Лавуазье. Самопроизвольный радиоактивный распад в условиях отсутствия опытных данных о синтезе новых атомов мог истолковываться как односторонний процесс постепенного разрушения вещества во Вселенной. Открытие первой субатомной частицы - электрона - выглядело аргументом в пользу отвергнутых представлений об электрической субстанции. Казалось, что был поставлен под сомнение и закон сохранения энергии. Возникшая ситуация свидетельствовала о том, что новые экспериментальные факты не укладываются в существовавшую физическую парадигму. Таким образом, обозначились истоки революционных преобразований в физических концепциях. Первый этап этих преобразований начался в конце XIX века. Последующие этапы развертывались уже в XX веке.
[1] Цит. по: ДорфманЯ.Г. Всемирная история физики с начала XIX до середины XX вв. М.,1979. С.8.
[2] Лауэ М. История Физики.М.,1956.С.46.
[3] Бернал Дж. Наука в истории общества.М.,1956.С.329.