1.2.1 Расчёт интенсивности теплоотдачи со стороны греющего теплоносителя
По среднеарифметическому значению температуры
В первом приближении температура стенки, ºС:
По
Критерий Рейнольдса для потока греющего теплоносителя, ([7]):
где
В результате сравнения вычисленного значения
При турбулентном режиме течения жидкости (Re > 2300) в круглых трубах и каналах число Нуссельта определяется по критериальной зависимости, ([7]):
Коэффициент теплоотдачи от горячего теплоносителя к стенке трубы, Вт/(м²· К), ([7]):
1.2.2. Расчёт интенсивности теплоотдачи со стороны нагреваемого теплоносителя
По среднеарифметическому значению температуры
Число Рейнольдса для потока холодного теплоносителя, ([7]):
где
В результате сравнения вычисленного значения
При движении теплоносителя в межтрубном пространстве коэффициент теплоотдачи рассчитывают по уравнению ([7]):
За определяющий геометрический размер принимают наружный диаметр теплообменных труб.
Коэффициент теплоотдачи от стенок трубного пучка к нагреваемому теплоносителю, Вт/(м²· К), ([7]):
1.3 Определение коэффициента теплопередачи
Если (
где
Толщина стенки трубки вычисляется по формуле, ([7]):
Вычисленное значение коэффициента теплопередачи сравнивается с ориентировочными значениями k для соответствующих теплоносителей ([1]).
1.4. Определение расчетной площади поверхности теплообмена
В аппаратах с прямо- или противоточным движением теплоносителей средняя разность температур потоков определяется как среднелогарифмическая между большей и меньшей разностями температур теплоносителей на концах аппарата, ([7]):
где
График изменения температур теплоносителей при противотоке, ([7], рис. П1.2)
Рис.1. Графическая зависимость для определения большей и меньшей разности температур теплоносителей
При сложном взаимном движении теплоносителей, например при смешанном и перекрестном токе в многоходовых теплообменниках, средняя разность температур теплоносителей определяется с учетом поправки
Для нахождения поправочного коэффициента