Смекни!
smekni.com

Исследование влияния технологических параметров процесса каширования на физико-механические свойства (стр. 4 из 12)

Наибольшим спросом пользуются пленки с повышенными барьерными свойствами, так как они подходят для широкого ассортимента упаковываемой продукции. Большой внимание уделяется сохранности упаковываемого продукта и его внешнему виду [16].

Со временем значительно изменились функции упаковки. Теперь они не ограничиваются предохранением изделий, сохранением их качеств и обеспечением гигиеничности. К упаковке предъявляют требования облегчения обращения с товарами, обеспечения максимальной экономичности процессов упаковывания и обработки товаров при их распределении, транспортировке, складировании и перемещении в магазинах. Упаковка должна информировать потребителя о составе, характеристиках, способе употребления продукта. Она становится мощным средством рекламы и маркетинга продукции, нацеленным на продвижение товаров на конкурентный рынок. Благодаря удачной упаковке увеличивается объём продаж, открываются перспективы роста производства, увеличения прибыли. При близких характеристиках однородных продуктов качественная упаковка играет определяющую роль в формировании у покупателя решения о покупке товара [7].

1.2 Адгезионная прочность композиционного материала

Комбинированные пленочные материалы представляют собой многослойные системы, составленные из слоев – пленок, связанных адгезионным взаимодействием, за счет чего обеспечивается монолитность композиционного материала.

Адгезией называется взаимодействие разнородных тел, приведенных в контакт. Количественно адгезия оценивается удельной энергией или удельной силой разрушения соединения, которая называется адгезионной прочностью.

Адгезионная прочность является важнейшей эксплуатационной характеристикой композиционных материалов и обычно оценивается сопротивлением расслаиванию. Адгезионное взаимодействие пленочных слоев способствует синхронизации их работы при механическом деформировании, то есть, вовлечению в процесс деформации всех компонентов материала. Адгезионное взаимодействие является специфическим фактором в гетерогенной системе, изменяющим подвижность и структуру не только граничных, но и отдаленных от поверхности слоев полимера. Поэтому улучшение эксплуатационных свойств композитов часто связано с изысканием методов регулирования адгезионного взаимодействия между компонентами гетерогенной системы, т. к. эксплуатация ее возможна только при условии достаточно высокой адгезии между слоями. Для этого прибегают к некоторым технологическим приемам: очистка и активирование поверхности, использование адгезивов и так далее.

Адгезионная прочность комбинированных материалов зависит от характера взаимодействия между молекулами адгезива и субстрата. Однако для обеспечения адгезии большое значение имеет микрорельеф поверхности пленки, ее чистота, полное смачивание адгезивом.

Некоторые распространенные полимерные пленки, например, полиолефиновые – являются инертными по своей химической природе, имеют гидрофобную, малопористую поверхность. Поэтому при использовании их в качестве конструкционных материалов при склеивании и комбинировании необходима специальная обработка, приводящая к повышению гидрофильности, шероховатости и изменению химического состава поверхности.

Существуют различные способы активации поверхности с целью улучшения их адгезии. Ими могут быть механические, физические и химические способы.

Весьма эффективным методом повышения адгезионной прочности пленочных материалов, особенно полиолефиновых, является химическая модификация их поверхности.

В этом случае адгезия их к покрытиям, клеям, краскам увеличивается за счет повышения реакционной способности полимеров. Адгезия полиолефинов к другим полимерам весьма низка. Для ее увеличения в макромолекулы полиолефинов, например, полиэтилена, вводят полярные группы [4].

Интенсивная термическая обработка полиолефинов при экструзионном нанесении, вследствие окисления поверхностного слоя, может вызвать увеличение адгезионной способности полиэтилена. На поверхности полиэтилена возникают кислородсодержащие группы, которые могут взаимодействовать с активными группами пленки-основы, а также двойные связи. При повышении температуры экструзии полиолефинов усиливаются деструктивные процессы, которые приводят к снижению устойчивости при эксплуатации.

Ведение процесса нанесения полиэтиленового покрытия при температуре 310–315ºС приводит к хорошей адгезии его к основе. Но в то же время высокая температура экструзии полиолефинов усиливает деструктивные процессы [12].

Как правило, пластики имеют химически инертную и непористую поверхность с низким поверхностным натяжением, что затрудняет образование химических и механических связей с подложками, печатными красками, покрытиями и клеями. В семействе пластиков самую низкую поверхностную энергию имеют полиэтилен и полипропилен. Именно они чаще всего подвергаются поверхностной обработке для улучшения их адгезионных свойств.

Цель поверхностной обработки – увеличить смачиваемость поверхности, улучшая, таким образом, ее способность к образованию связей с растворителями, клеями, красками, лаками и материалами для экструзионного покрытия. Чтобы поверхность хорошо смачивалась жидкостью, поверхностная энергия пластика должна быть выше поверхностного натяжения этой жидкости. Поверхностная энергия измеряется в динах на сантиметр. В идеале поверхностная энергия пластика должна быть на 7–10 дин/см выше, чем поверхностное натяжение растворителя или жидкости. Например, печатная краска с поверхностным натяжением 30 дин/см не может в достаточной мере соединиться с материалом, поверхностная энергия которого меньше 37–40 дин/см (рис. 1.1) [21].

Существуют четыре метода обработки поверхности с этой целью:

- коронный разряд;

- кислотное или плазменное травление;

- огневая обработка;

- грунтовка.


Рис. 1.1. Поверхностное натяжение

Широко используемым методом обработки поверхности пленок с целью повышения адгезионной способности является коронный разряд. Коронный разряд характеризуется высоким напряжением (до 25–30 кВ), слабым током переменной частоты (200–100000 Гц), и происходит при комнатной температуре. Существует мнение, что коронный разряд концентрируется на дефектах полимерного образца (микроскопических порах, отверстиях) и увеличивает их в результате пробоя. Но однозначного объяснения увеличения адгезионной способности пленки под действием коронного разряда пока не существует [12].

Согласно традиционному взгляду, предварительно обработанный материал не требует дополнительной встроенной системы обработки при использовании печатной краски на растворителях. Однако многие полиграфические компании пришли к выводу, что включение поверхностной обработки в технологический процесс имеет несколько преимуществ. Обработка поверхности в потоке с печатью позволяет, благодаря более сильной адгезии и смачиванию краской, добиваться устранения белых точек на плашках и цветовых переходах и получать лучшее качество печати в целом. Материалы с более высокой поверхностной энергией могут потребовать повторной обработки коронным разрядом, чтобы получить необходимую адгезию [21].

Модификацию поверхности полиэтиленовых, лавсановых пленок и целлофана можно проводить при обработке в электрическом поле, где пленку активируют и зазоре между двумя валами – электродами. В электрическом поле происходит ионизация молекул кислорода и образование озона, результатом является окисление поверхностного слоя полимерной пленки.

Эффективным методом модификации поверхности пленок является УФ – облучение – один из способов повышения адгезионной прочности. УФ-радиация, поляризуя воздух, образует озон, который вступает в химическое взаимодействие с пленочным материалом. Кроме того, смещая электроны атомов, образующих молекулы полимера, радиация ускоряет образование окисных, карбонильных, перекисных и гидроперекисных групп. Результатом УФ-облучения является увеличение плотности сшивки и образование двойных связей [12].

УФ-лучи, попадая на комбинированный материал, разрывают слабые связи, при этом на поверхности как адгезива, так и субстрата возникают радикалы, которые образуют между собой прочную адгезионную связь.

При изучении факторов, влияющих на прочность адгезионных соединений, немаловажное значение придается свойствам и строению субстрата [10].

1.3 Методы производства многослойных пленочных материалов

Основными методами производства многослойных пленочных систем являются:

• соэкструзия (рукавная и плоскощелевая);

• экструзионное ламинирование;

• склеивание или каширование;

• нанесение покрытий из растворов и дисперсий;

• вакуумная металлизация.

Методом соэкструзии можно получать только многослойные пленки. Основные полимеры для соэкструзии – полиэтилены различной плотности, их сополимеры с винилацетатом и виниловым спиртом, полипропилен и его сополимеры с этиленом, иономеры, сополимеры хлорсодержащих олефинов – винилхлорида и винилиденхлорида, полиамиды и сополиамиды.

Преимуществами процесса являются – одностадийность, экономичность, возможность формирования очень тонких слоев и регулирования толщин в процессе производства; возможность изменения чередования слоев в материале; возможность использования полимеров, которые нельзя перерабатывать экструзией для производства однослойных пленок; придание многослойной пленке особых эстетических качеств путем сочетания полимеров, различающихся цветом или фактурой поверхности; и, наконец, при соэкструзии дорогостоящие добавки (антиоксиданты, ультрафиолетовые стабилизаторы, скользящие, антиблокирующие, антистатические добавки) можно добавлять не во все, а в строго определенные слои.