Рассмотрим, когда в нашем случае выполняется условие (3.15):
(3.16)Подставив известные параметры в уравнение (3.16), получим:
(3.17)Теперь необходимо получить оценку параметра
. Значение параметра получено путем обработки экспериментальных данных, представленных в [11]: [ ].Используя полученную оценку
, подставим ее в (3.17): => .Таким образом,
– область значений параметра , определяющего быстродействие системы, при котором выполняется неравенство (3.17), а значит, система будет асимптотически устойчива относительно поверхности скольжения и, следовательно, в ней будет возникать скользящий режим.Для практической реализации закона управления (3.6) с целью оценки
и ее производной можно использовать дифференцирующий фильтр 1-го порядка (ДФ). На рис.3.16 представлена структурная схема системы с ДФ 1-го порядка.
Контур быстрых движений является нелинейным, для исследования его свойств используется метод гармонического баланса. В данной работе для нахождения параметров автоколебаний применяется способ Гольдфарба. Основная идея этого способа заключается в следующем: из основного уравнения метода гармонического баланса
(3.20)выделяется частотная характеристика линейной части КБД
(3.21)На основе этого уравнения графоаналитическим способом находятся параметры автоколебаний.
Согласно [12] передаточная функция гармонически линеаризованного нелинейного элемента имеет вид:
Передаточная функция линейной части КБД (рис.3.17) с учетом (3.21), примет вид:
(3.23)После замены p на jw и подстановки в (3.23), выделяются вещественная Re(jw) и мнимая Jm(jw) части. Затем на комплексной плоскости строится амплитудно-фазовая характеристика линейной части и АФХ нелинейного элемента (рис.3.18).
Рис.3.18. АФХ линейной части КБД (1) и обратная АФХ нелинейного элемента (2)
Таким образом, АФХ линейной части
и обратная частотная характеристика нелинейного элемента , имеют точку пересечения в нуле (А=0, w=0), следовательно, автоколебаний в системе нет.Полученные результаты согласуются с видом переходных процессов (рис.3.19-3.20), полученных моделированием системы с помощью пакета Matlab 6.5.
Рис.3.19. График управляющего воздействия
Рис.3.20. График расхода воздуха на выбранном участке вентиляционной сети метрополитена
На практике такой режим работы невозможен, т. к. высокая частота включения исполнительного механизма приведет к его преждевременному износу. Для исключения этого недостатка повысим порядок ДФ, что также сможет обеспечить фильтрацию помехи измерения.
В реальной ситуации частота переключения определяется малыми неучтенными инерционностями, а также параметрами дифференцирующего фильтра, применяемого для реализации закона управления.
Представим структурную схему системы с ДФ 2-го порядка.