Снижение доли печорских углей в шихте приводит к усилению колебаний всех показателей (как шихты, так и кокса) относительно средних значений. Основная причина этого заключается, с одной стороны, в изменчивости свойств углей в пределах определенных марок и, с другой стороны, в широкой вариативности марочного состава концентратов, производимых в настоящее время на углеобогатительных фабриках Кузнецкого бассейна. При этом выбор того или иного поставщика может оказаться критическим. Так, при полной замене исходного сырья с использовани-
ем концентрата ЦОФ «Кузнецкая» вместо угля ЦОФ «Абашевская» и концентрата ГОФ «Тому-синская» вместо угля ЦОФ «Березовская» среднее значение Л/10 повышается с 8,53 до 8,96%, а максимальное — с 12,09 до 14,25%.
В этой связи при составлении рабочего плана производства кокса на коксовых батареях № 4 и № 5—6 из кузнецких концентратов особое внимание уделяли их фактическому марочному составу, для чего осуществляли рефлектограммный анализ поступающих на ОАО «Северсталь» концентратов. Опыты были проведены в пять этапов при постепенном увеличении в шихте доли углей Кузбасса. Часть кокса батареи № 4 (70—88%) была потушена на УСТК. Показатели качества полученного кокса в сравнении с данными базисного периода на примере коксовой батареи № 4 приведены в работе [9].
Как видно из данных этой работы, при переходе от базисного периода к этапам I—V с постепенным увеличением в шихте доли углей Кузбасса наблюдается постепенное снижение показателей механической прочности кокса: заметно снижается индекс дробимости М25 и повышается — индекс истираемости кокса М|0. При этом более чувствительны к вводу кузнецких углей показатели качества кокса батарей № 5—6 с мокрым тушением [9]. Показатель Ктреакционной способности кокса по ГОСТ 10089-89 (при 1000 °С) для опытных этапов в среднем несколько ниже в сравнении с базисными данными, что может обусловливаться как составом минеральных компонентов, так и особенностями текстуры кокса. При этом показатель CRI, характеризующий реактивность кускового кокса при более высокой температуре (1100 °С), повышается относительно базиса на этапах I и II, уменьшаясь при дальнейшем увеличении доли кузнецких концентратов с повышенным содержанием углей коксового ряда. Показатель CSR, характеризующий «горячую» прочность кокса, в конце испытаний (этапы IV, V) приобретает наиболее высокие значения. Кокс, получаемый на батарее № 4 и подвергаемый сухому тушению, характеризуется в среднем меньшей реактивностью CRI и более высокой доменной прочностью по CSR. Таким образом, хотя при введении в шихту повышенного содержания углей Кузбасса механическая прочность кокса несколько снижается, его прочность после реакции с СО2 возрастает, что обусловлено, по-видимому, увеличением доли анизотропных текстур кокса.
Дополнительно методом ящичных коксований (с использованием перфорированных цилиндров с загрузкой 2 кг угля) в печных камерах коксовых
батарей № 5-6 было проведено опробование восьми типовых углей Австралии, фигурирующих на мировых рынках коксующихся углей [10]. Показано, что наиболее пригодными для разработки шихт представляются коксовые угли Goonyella и Reverside. В количестве соответственно 20 и 20— 35% они могут заменить кузнецкие угли марки КС и частично жирные печорские угли. Недостатком австралийских углей следует считать их повышенную зольность (8,6—9,8%) и сернистость (до 0,6%), а достоинством — отнесение их к марке 1К по ГОСТ 25543—88 и пониженное содержание в золе щелочных компонентов (1,1 —1,2%), что благоприятствует получению кокса низкой реакционной способности (Кт — 0,133+0,136 см3 -г~' с~'). Этому соответствуют показатели CRI = 30 и CSR = 55%. При использовании углей Австралии из-за их повышенной стоимости возрастает и себестоимость кокса. Поэтому расширение сырьевой базы за счет австралийских углей реально лишь при возникновении форс-мажорных обстоятельств с поставками углей коксового ряда либо при повышении стоимости российских углей до мирового уровня.
В отличие от этого показатель CRI определяют по величине «угара» кокса в атмосфере СО2 (5 л/мин) при 1100 °С и продолжительности испытаний т = 2 ч. При этом используют повышенную загрузку кокса (200 г) при большем размере его частиц (20 мм). Таким образом, более надежно моделируются условия реагирования кокса в доменной печи, а количества подвергнутого воздействию СО2 кокса вполне достаточно для испытания на прочность. По выходу класса > 10 мм при испытании в барабане устанавливают индекс «горячей» прочности кокса CSR.
Газификация кокса по этой методике идет преимущественно во внутридиффузионном режиме [12, 13], как это имеет место в шахте доменной печи, вследствие чего определяемый по «угару» кокса CRI (%) коэффициент скорости процесса газификации
следует рассматривать как некоторую эффективную величину, отражающую реактивность поверхностного слоя крупнокускового кокса. Поскольку процесс в этом случае проводят при более высокой температуре (выше на 100 °С), значения &эф по (2) для тех или иных исследуемых коксов будет всегда выше в сравнении со значением константы скорости к по (1). Соотношение между к . и к можно характеризовать поэтому эф-
Эф
фективной энергией активации (кДж/моль):
Как показано в работе [13], величины Е и Кт находятся в обратной корреляционной зависимости, причем взаимосвязь между ними для различных коксов подчиняется одной и той же закономерности для образцов кокса различных производителей (рис. 2). Коэффициент корреляции между отдельными значениями для 40 образцов металлургического кокса и усредненной кривой Еа =f(KJ, проведенной по методу наименьших квадратов, составляет 0,955. По-видимому, чем пассивнее углерод кокса взаимодействует с СО2 (т.е. чем ниже значения KJ, тем выше должен быть активационный барьер, и наоборот: чем легче осуществимо взаимодействие С + СО2 (т.е. чем выше значения KJ, тем более низкий активационный барьер должен быть преодолен для протекания этой реакции.
При известных значениях эффективной энергии активации Еаи истинной константы скорости к взаимодействия кокса с СО2 можно из (4) определить коэффициент к'
Наибольшей реакционной способностью по обоим показателям реактивности (Кти CRT) характеризуется кокс коксовых батарей № 5—6, подвергаемый мокрому тушению, а наименьшей реакционной способностью — кокс сухого тушения батарей № 7—10. При этом данные по коксу батареи № 4, который подвергается сухому тушению лишь частично, занимают промежуточное положение.
эмпирические коэффициенты которой а и b принимают конкретные численные значения в зависимости от коксуемого сырья и условий коксования (см. таблицу). Численные значения коэффициентов формулы (7) для кокса разных батарей несколько отличны, но в пределах доверительных интервалов (удвоенных значений указанных со знаком + среднеквадратических отклонений) согласуются между собой, что дает возможность получить усредненную зависимость между CSR и С/?/[14].
лей. Сделан вывод, что показатели как «холодной», так и «горячей» прочности формируются под воздействием множества факторов, каждый из которых меняется случайным образом.
При стабильном режиме работы коксовых печей основной причиной довольно широкой вариации значений всех индексов прочности кокса можно считать изменчивость вещественного состава и свойств используемых при составлении коксовых шихт углей и концентратов [15]. При этом показатели «холодной» и «горячей» прочности отражают как общие элементы структуры коксов (о чем свидетельствует усредненная корреляция между ними), так и особенности структуры, отличающиеся соответственно в случае исходного кокса и после реакции его с СОГ В частности, именно показатель «горячей» прочности CSR лучше всего коррелирует с удельным расхо-
дом топлива на выплавку чугуна в доменной печи. Выполненный в [6] математико-статистический анализ производственных данных показал, что повышение значения CSR на 1 % приводит к снижению расхода кокса на Д# = 0,7-^3,2 кг/т чугуна: