Смекни!
smekni.com

Формирование современной сырьевой угольной базы коксохимического производства ОАО Северсталь (стр. 1 из 3)

ФОРМИРОВАНИЕ СОВРЕМЕННОЙ СЫРЬЕВОЙ УГОЛЬНОЙ БАЗЫ КОКСОХИМИЧЕСКОГО ПРОИЗВОДСТВА ОАО «СЕВЕРСТАЛЬ»

© Канд. техн. наук Ю.В.Коновалова, В.Н.Трифанов(ОАО «Северсталь»), докт. хим. наук А.М.Гюльмалиев, канд. хим. наук С.Г.Гагарин (ФГУП ИГИ) и докт. техн. наук И.А.Султангузин (НТЦ «ЛАГ инжиниринг»)


Коксохимическое производство — основное на­правление нетопливного использования камен­ных углей при технологической их переработке высокотемпературной карбонизацией в метал­лургический кокс для получения чугуна и стали в доменном процессе. Череповецкий металлур­гический комбинат (ОАО «Северсталь»), произ­водящий до 15% кокса и 20% стали в России, по праву считают одним из ведущих металлургичес­ких предприятий Российской Федерации. Основ­ные этапы становления и развития комбината со времени выдачи 12 февраля 1956 г. первого кокса были рассмотрены ранее при подведении итогов 45-летия производства в 2001 г. [1].

В переходный период от централизованной плановой экономики к рыночным методам хо­зяйствования произошло разрушение сложив­шейся сырьевой угольной базы комбината, и к началу XXI века она характеризовалась суще­ственной нестабильностью с точки зрения как марочного состава поставляемых углей и концен­тратов, так и непостоянства показателей их ка­чества. Отрицательный эффект ухудшения ма­рочного состава углей компенсировали повыше­нием уровня «сквозного управления» качеством угольных шихт и кокса и технологией коксохи­мического и доменного производств [2, 3]. При этом составление угольных шихт для коксования основывалось на данных производственного опыта, показателях технического анализа углей (выход летучих веществ Vdaf, влажность Wrt, золь­ность Ad , содержание общей серы Sf и фосфора Prf) и пластометрии (толщина пластического слоя у, усадках).

С учетом реалий нового этапа возникла необ­ходимость разработки научно-технических основ формирования сырьевой базы коксования с при­менением компьютеризованного подбора компо­нентов угольных шихт для получения высокока­чественного металлургического кокса в услови­ях нестабильности марочного состава и характе-


ристик исходных углей. В соответствии с этим были сформулированы и решены следующие за­дачи:

разработка компьютерной базы данных по пер­спективным для коксования углям основных шах-топластов Печорского и Кузнецкого бассейнов;

обоснование применения комплекса совре­менных методов управления производством кок­са и создание общей методологии оценки сырья в условиях реального производства, включающих контроль качества угольного сырья на основе ав­томатизированного рефлектограммного анализа, компьютерный расчет показателей качества кок­са, определение реакционной способности куско­вого кокса (индекс CRI) и его послереакционной прочности (CSR);

исследование коксуемости шихт по данным петрографического состава и стадии метаморфиз­ма углей с применением как традиционных ю, М25, М40), так и современных прочностных харак­теристик кокса (CRI, CSR);

выбор оптимальных составов угольных шихт с помощью компьютерного моделирования с сопо­ставлением данных расчета и результатов произ­водственных коксований; проведение опытных доменных плавок и определение на этой основе структуры сырьевой базы коксохимического про­изводства.

Для предварительной оценки петрографичес­ких характеристик углей (показатель отражения витринита Ro, содержание отощающих компонен­тов ZOK) на основе компьютерной базы данных по каменным углям основных бассейнов РФ (Пе­чорский, Кузнецкий) были определены количе­ственные взаимосвязи между традиционными (Vdnf, у) и петрографическими показателями (Rn, ЪОК) [4]. С целью прямого определения мацераль-ного состава углей и концентратов и распределе­ния значений показателя отражения витринита в них внедрен и успешно освоен автоматизирован­ный комплекс рефлектограммного анализа оте-



чественной разработки (фирма «СИАМС», г. Ека­теринбург). Это позволило надежно определять марки углей и устанавливать соотношения меж­ду показателем отражения витринита Rg, а также вкладом углей различных марок на величину ин­декса CSR [5, 6].

Неоднородность угольного сырья выявляется непосредственно по рефлектограмме витринита, как это следует из рис. 1 на примере одной из партий концентрата ЦОФ «Березовская». Для этого концентрата среднее значение показателя отражения витринита Ror = 1,134% и при учете остальных классификационных показателей (Vt 46%; ЗЮК 50%; Vd'"2\%;y9 мм) концентрат опи­сывается по ГОСТ 25543—88 маркой КС. Факти­чески же, как это следует из рефлектограммы, формальная марка обусловливается комбинаци­ей ряда различных углей, что указывает на слож­ный марочный состав концентрата. При этом значения показателя отражения, соответствую­щие отдельным участкам рефлектограммы и опи­сывающие витринит разных угольных составля­ющих концентрата, существенно влияют на ве­личину коэффициентов коксуемости и отощения

[7].

В условиях значительного числа поставщиков рядовых углей и концентратов ежесуточно воз­никают задачи надлежащего выбора компонен­тов угольных шихт для коксования, эффективно решаемые на основе данных рефлектограммно-го и технического анализов и результатов плас-тометрии. К наиболее важным задачам можно от­нести: установление фактической марочной при­надлежности угольного сырья в сравнении с за-


явленной поставщиком; определение соотноше­ния между количеством концентратов и рядовых углей (направляемых на обогащение по техноло­гической схеме комбината); взаимозамена ком­понентов шихты в зависимости от текущих коле­баний поставок и наличия углей на складе; вы­бор лучшего сырья с позиций повышения каче­ства кокса, а при заданных показателях кокса — для достижения наименьшей стоимости исходно­го сырья (стоимость угля составляет до 80% в се­бестоимости кокса).

При нестабильности марочного состава уголь­ного сырья особую актуальность приобретает из­бирательное измельчение, поскольку возникает необходимость оперативного определения степе­ни дробления тех или иных партий углей и кон­центратов. Характерно, что рефлектограммы вит­ринита для различных классов крупности в мно­гокомпонентных смесях, составленных из углей разных стадий метаморфизма, отличаются друг от друга существенным образом. Эти обстоятельства необходимо учитывать при выборе схем избира­тельного измельчения, разработку которых сле­дует начинать с анализа рефлектограмм для клас­сов крупности каждого компонента угольной шихты [7].

Для оценки пригодности различных вариан­тов шихты для коксования применяют компью­терное моделирование на основе петрографичес­кого метода Амосова— Еремина [4, 8, 9]. Для про­ведения расчетов качества кокса из произвольных угольных шихт алгоритм петрографического ме­тода реализован на языках программирования С++ и Quick Basic. Оценка угольных смесей в рамках данного алгоритма проводится по индексу ото­щения Кти коэффициенту коксуемости К, зна­чения которых определяют величину остатка кок­са в большом колосниковом барабане G и пока­затели механической прочности кокса в микум-барабанах М,,, М40, Мю.

Впервые в промышленном масштабе в усло­виях нестабильности марочного состава углей было проведено направленное формирование сырьевой базы коксохимического производства с получением кокса, удовлетворяющего требова­ниям доменного процесса. Производственные опыты проводили на коксовых батареях № 4 и № 5—6. При составлении пробных шихт учиты­вали возможность значительных колебаний со­става концентратов. Так, для ЦОФ «Абашевская» содержание угля марки ГЖ в продукции фабри­ки могло меняться от 1,4 до 23,9, а угля марки Ж — от 82,6 до 96,1 %. Концентрат ЦОФ «Березовс­кая» наряду с объявленными марками К+КО+КС (при существенно изменчивом их соотношении)


содержит угли марок КСН и СС и до 6% газового угля. Естественно, что для каждого из компонен­тов концентратов могли меняться и их свойства в пределах диапазона той или иной марки.

Анализ возможного влияния нестабильности состава кузнецких угольных концентратов на ме­ханическую прочность кокса выполнен по пет­рографической модели прогноза показателей прочности кокса М25, Мю. Результаты моделиро­вания показали, что для исходного варианта тра­диционной шихты комбината характерна высо­кая устойчивость результатов к замене поставщи­ков концентратов сходного марочного состава. При этом несущественно меняются средние зна­чения различных характеристик смесей (выход летучих веществ 28,5—29,1%, толщина пласти­ческого слоя ~15 мм, показатель отражения вит-ринита 1,08—1,10%). Индекс отощения шихты и коэффициент коксуемости составляют в среднем соответственно 1,16—1,17 и 5,53—5,56. Достаточ­но стабильны к замене кузнецких концентратов разных углеобогатительных фабрик и прогнози­руемые значения дробимости (М2_ = 89,8+89,9%) и истираемости кокса (Л/10 = 7,64+7,73%). Все это свидетельствует о повышенной способности ис­пользуемых на комбинате углей Печорского бас­сейна, составляющих ядро коксуемых шихт, к «поглощению» определенного количества куз­нецких углей широкого и непостоянного мароч­ного состава без драматических последствий.

Однако при увеличении доли в шихте для кок­сования концентратов углей Кузбасса указанное свойство печорских углей начинает постепенно ослабевать. Так, при увеличении доли кузнецких углей в шихтах для каждого набора поставщиков выявляется почти монотонное повышение индек­са отощения шихты и снижение — коэффициен­та ее коксуемости, что, естественно, ведет к ухуд­шению прочностных характеристик кокса. При полном выводе из состава шихт традиционных углей Печорского бассейна значения M]Q могут повыситься почти на 1% в абсолютном исчисле­нии.