Выражение (5.11) содержит два взаимонезависимых подобных интегра-ла
Подставив (5.13) в (5.9) получим
Выражение (5.14) описывает пространственное распределение комп-лексных амплитуд светового поля в плоскости х3у3 спектрального анализа и содержит ряд взаимонезависимых квадратичных фазовых сомножителя, по-ле в плоскости х3у3 является фурье-образом поля в плоскости х1у1 за входным транспарантом
Подинтегральный квадратичный сомножитель в выражении (5.14) для распределения поля в плоскости х3у3 анализа
Решив уравнение (5.17) относительно
Полученное уравнение (5.18) представляет собой известное условие Гауса о фокусировке оптической системы, согласно
Таким образом, только при условии фокусировки оптической системы, представленной на рис.2, в ней осуществляется спектральное преобразо-вание Фурье, формируемое в плоскости х3у3, над сигналом
Решив уравнение (5.21) относительно
Таким образом, квадратическая фазовая модуляция фурье-образа устра-нима лишь в двух случаях:
· при размещении сигнального транспаранта в передней фокальной плоскости фурье-объектива, что полностью совпадает с полученными ранее результатами исследований, но лишь для КОС с плоской вол-ной во входной плоскости, т.е. при
· при
Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:
откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).
Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:
Распределение
кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала
Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.
Тогда согласно [11, 12] выходной сигнал ФИС с безинерционным фотоприемником, воспринимающим весь световой поток, прошедший через полевую диафрагму, можно определить как
Так как в общем виде интеграл свертки (5.27) вычисляется аналитически лишь для простых элементарных функций, то при вычислении свертки сложных монотонно-гладких функций, значительно отличающихся по шири-не, допускают аппроксимацию результата более широкой функцией, что обеспечивает погрешность не более 6-10% в пределах более широкой функции [10, 17, 18].
Поэтому для повышения точности измерения спектра и упрощения вычисления интеграла (5.27), ширина полевой диафрагмы