Выражение (5.11) содержит два взаимонезависимых подобных интегра-ла
и , каждый из которых может быть вычислен с использованием табличного интеграла вида : (5.12). Применив (5.12) к (5.11), но предва-рительно обозначив через , и (5.12), выражение (5.11) можно представить в виде : (5.13).Подставив (5.13) в (5.9) получим
(5.14).Выражение (5.14) описывает пространственное распределение комп-лексных амплитуд светового поля в плоскости х3у3 спектрального анализа и содержит ряд взаимонезависимых квадратичных фазовых сомножителя, по-ле в плоскости х3у3 является фурье-образом поля в плоскости х1у1 за входным транспарантом
с пространственными частотами и , равными , и (5.15)Подинтегральный квадратичный сомножитель в выражении (5.14) для распределения поля в плоскости х3у3 анализа
(5.16), при (5.17)Решив уравнение (5.17) относительно
определим (5.18).Полученное уравнение (5.18) представляет собой известное условие Гауса о фокусировке оптической системы, согласно
(5.19)Таким образом, только при условии фокусировки оптической системы, представленной на рис.2, в ней осуществляется спектральное преобразо-вание Фурье, формируемое в плоскости х3у3, над сигналом
, поме-щенным во входной плоскости х1у1. Однако, фурье-образ сигнала содержит квадратичную модуляцию фазы волны из-за наличия фазового сомно-жителя, стоящего перед интегралом в выражении (5.14). Наличие фазовой модуляции фурье-образа приводит к тому, что при регистрации его методами голографии в результирующей интерферограмме возникают дополнительные аберрации, значительно влияющие на его качество. Эта модуляция также имеет важное значение и не может быть опущена в случае дальнейших преобразований деталями оптической системы фурье-образа сигнала . Однако, квадратичная модуляция фазы фурье-образа может быть устранена при соответствующем выборе геометри-ческих параметров оптической системы, т.е. (5.20) при (5.21).Решив уравнение (5.21) относительно
находим (5.22) при =0, либо .Таким образом, квадратическая фазовая модуляция фурье-образа устра-нима лишь в двух случаях:
· при размещении сигнального транспаранта в передней фокальной плоскости фурье-объектива, что полностью совпадает с полученными ранее результатами исследований, но лишь для КОС с плоской вол-ной во входной плоскости, т.е. при
.· при
, т.е. плоскость х3у3 спектрального анализа должна совпа-дать с плоскостью х2у2 размещения фурье-объектива, что физически нереализуемо в оптической системе, согласно условию Гауса.Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:
(5.23),откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).
Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:
, на узкую щеле-вую диафрагму вдоль координаты х3. Наиболее общим методом решения подобных задач является вычисление интеграла свертки функции освещенности с функцией пропускания полевой диафрагмы ФИС, равной: (5.24), где - ширина щели вдоль координаты х3, - высота щели вдоль координаты у3.Распределение
комплексных амплитуд световой волны в плос-кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала
т.е. .Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.
(5.25), где К - постоянный коэфициент, зависящий от свойств среды, где распостраняется электромагнитная волна [14, 23]. Поэтому пространственно-частотный энергетический спектр входного сигнала пропорционален распределению освещенности в плоскости спектрального анализа КОС, т.е. (5.26), где , - взаимосвязь между пространственными х(у) и пространственно-частотными координатами в плоскости спектрального анализа КОС; комплексная постоянная, определяемая (5.8).Тогда согласно [11, 12] выходной сигнал ФИС с безинерционным фотоприемником, воспринимающим весь световой поток, прошедший через полевую диафрагму, можно определить как
(5.27), где - интегральная чувствитель-ность фотоприемника; - положение центра полевой диафрагмы в фиксированный момент времени при измерении сечения спектра вдоль координаты .Так как в общем виде интеграл свертки (5.27) вычисляется аналитически лишь для простых элементарных функций, то при вычислении свертки сложных монотонно-гладких функций, значительно отличающихся по шири-не, допускают аппроксимацию результата более широкой функцией, что обеспечивает погрешность не более 6-10% в пределах более широкой функции [10, 17, 18].
Поэтому для повышения точности измерения спектра и упрощения вычисления интеграла (5.27), ширина полевой диафрагмы
выбрана равной 20 мкм, что в десятки раз меньше ширины максиумов функции .