Полученное выражение (5.38) позволяет определить максимально допустимую величину СКО
, доступную для контроля амплитудным ме-тодом, в зависимости от номеров используемых максимумов спектра и шу-мов ФИС. Из выражения (5.38) следует, что увеличить допустимое значение можно путем уменшения шумов ФИС, либо увеличения освещен-ности квазипериодической структуры ЛЗ. Увеличение за счет по-вышения достигается благодаря работе ФИС по пороговому сигналу лишь от одного, т.е. -го максимума. При этом амплитуда другого, т.е. -го максимума, не является пороговой для ФИС, поскольку в (5.31) она всегда больше амплитуды -го максимума.6. Расчетная часть
6.1. Габаритный расчет
Сначала произведем габаритный расчет схемы когерентного оптичес-кого спектроанализатора. Зададимся соответствующими значениями диаметра фурье-объектива, фокусным растоянием фурье-объектива, продольным размером ЛЗ.
1. Тогда имеем
, , .2. Определим отрезок
. мм.3. Определим отрезок
. мм.Теперь нам нужно произвести расчет согласование лазерного пучка по апертуре с оптической системой КОС.
4. Зададимся относительным отверстием
.5. Определим размер перетяжки
.Из [3] известна формула
. Выразим искомый параметр через заданный, в результате получим мкм.6. Определим конфокальный параметр
. мкм.7. Определим положение перетяжки относительно линзы.
мкм. мм.8. Определим значение диаметра светового пятна на линзе.
мм.9. Теперь можем пересчитать фокусное растояние по заданному относи-тельному отверстию и раситанному
. мм.10. Расчитаем конфокальный параметр сфокусированного пучка.
мкм.11. Определим размер перетяжки.
мкм.12. Найдем положение перетяжки после объектива.
мкм.6.2. Энергетический расчет
Основные принципы энергетического расчета оптической системы КОС представлены в работе [6] и в 5 разделе данного курсового проекта, где рассматривается математическая модель измерительной системы .
В качестве исходных данных для энергетического расчета выбраны па-раметры лазера ( мощность
, длительность волны излучения и радиус перетяжки гауссового пучка излучения); геометрического размера опти-ческой системы (растояние между элементами, - фокусное растоя-ние и диаметр входного зрачка фурье-объектива); интегральная чувсви-тельность .Оптическая система КОС, выполненная по схеме “входной транспарант перед фурье-объективом”, состоит из ряда последовательно расположен-ных вдоль оптической оси узлов: источник когерентного излучения, входной транспарант, фурье-объектив, фоторегистратор спектра (рис.2).
Применив принцип Гюйгенса-Френеля (5.3), можно определить распре-деление светового поля в плоскости х2у2 перед фурье-объективом, а поле за ним - применив (5.2).
Таким образом, распределение поля в плоскости х3у3 анализа будет описываться :
, где - оператор Френеля для преобразования поля на i-м участке свободного пространства толщиной li.Распределение поля в плоскости х2у2 за фурье-объективом, согласно (5.2) будет
, а подставив (5.6) в (5.7) с учетом (5.3), распределение поля в плоскости х3у3 анализа можно представить в виде : ,где
.Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:
(5.23),откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).
Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:
, на узкую щеле-вую диафрагму вдоль координаты х3. Наиболее общим методом решения подобных задач является вычисление интеграла свертки функции освещенности с функцией пропускания полевой диафрагмы ФИС, равной: (5.24), где - ширина щели вдоль координаты х3, - высота щели вдоль координаты у3.Распределение
комплексных амплитуд световой волны в плос-кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала
т.е. .Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.
(5.25), где К - постоянный коэфициент, зависящий от свойств среды, где распостраняется электромагнитная волна [14, 23]. Поэтому пространственно-частотный энергетический спектр входного сигнала пропорционален распределению освещенности в плоскости спектрального анализа КОС, т.е. (5.26), где , - взаимосвязь между пространственными х(у) и пространственно-частотными координатами в плоскости спектрального анализа КОС; комплексная постоянная, определяемая (5.8).