Смекни!
smekni.com

Прогрессивные технологии (стр. 3 из 4)

3. Атмосферная коррозия - коррозия металлов в условиях атмосферы, а также любого влажного газа; наблюдается под конденсационными видимыми слоями влаги на поверхности металла (мокрая атмосферная коррозия) или под тончайшими невидимыми адсорбционными слоями влаги (влажная атмосферная коррозия). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

4. Коррозия в условиях механического воздействия. Этому типу разрушения подвергаются многочисленные инженерные сооружения, работающие как в жидких электролитах, так и в атмосферных и подземных условиях. Наиболее типичными видами подобного разрушения являются:

а) Коррозионное растрескивание; при этом характерно образование трещин, которые могут распространяться не только межкристаллитно, но также и транскристально. Примером подобного разрушения является щелочная хрупкость котлов, сезонное растрескивание латуней, а также растрескивание некоторых конструкционных высокопрочных сплавов.

б) Коррозионная усталость, вызываемая воздействием коррозионной среды и знакопеременных или пульсирующих механических напряжений. Этот вид разрушения также характерен образованием меж- и транскристаллитных трещин. Разрушения металлов от коррозионной усталости встречаются при эксплуатации различных инженерных конструкций (валов гребных винтов, рессор автомобилей, канатов, штанг глубинных насосов, охлаждаемых валков прокатных станов и др.).

в) Коррозионная кавитация, являющаяся обычно следствием энергичного механического воздействия коррозионной среды на поверхность металла. Подобное коррозионно-механическое воздействие может приводить к весьма сильным местным разрушениям металлических конструкций (например для гребных винтов морских судов). Механизм разрушения от коррозионной кавитации близок к разрушению от поверхностной коррозионной усталости.

г) Коррозионная эрозия, вызываемая механическим истирающим воздействием другого твердого тела при наличии коррозионной среды или непосредственным истирающим действием самой коррозионной среды. Это явление иногда называют также коррозионным истиранием или фреттинг-коррозией.

Методы защиты

С целью повышения долговечности строительных конструкций, зданий, сооружений проводятся работы в области улучшения противокоррозионной защиты.

Широко применяются следующие основные методы защиты металлических конструкций от коррозии:

1. Защитные покрытия;

2. Обработка коррозионной среды с целью снижения коррозионной активности. Примерами такой обработки могут служить: нейтрализация или обескислороживание коррозионных сред, а также применение различного рода ингибиторов коррозии;

3. Электрохимическая защита металлов;

4. Разработка и производство новых металлических конструкционных материалов повышенной коррозионной устойчивости путем устранения из металла или сплава примесей, ускоряющих коррозионный процесс (устранение железа из магниевых или алюминиевых сплавов, серы из железных сплавов и т.д.), или введения в сплав новых компонентов, сильно повышающих коррозионную устойчивость (например хрома в железо, марганца в магниевые сплавы, никеля в железные сплавы, меди в никелевые сплавы и т.д.);

5. Переход в ряде конструкций от металлических к химически стойким материалам (пластические высокополимерные материалы, стекло, керамика и др.);

6. Рациональное конструирование и эксплуатация металлических сооружений и деталей (исключение неблагоприятных металлических контактов или их изоляция, устранение щелей и зазоров в конструкции, устранение зон застоя влаги, ударного действия струй и резких изменений скоростей потока в конструкции и др.).

3. Бескоксовая металлургия.

Нарастающий дефицит и постоянное удорожание коксующихся углей может стать сегодня мощным стимулом к развитию бескоксовой металлургии – направления, связанного с разработкой новых способов получения железа из руд, исключающих использование кокса. Суть их состоит в том, что обогащенная руда или концентрат восстанавливается в печи с помощью твердого топлива либо конвертированного газа – природного метана, преобразованного в смесь водорода и угарного газа (СО). Всего в мире методами бескоксовой металлургии было произведено в прошлом году, примерно, 65 млн. т стали

К настоящему времени имеется значительное число технологий бескоксового производства металла, получивших промышленное распространение. Все их можно классифицировать следующим образом:

· процессы жидкофазного восстановления,

· процессы твердофазного восстановления,

· комбинированные процессы.

Процессы жидкофазного восстановления пока не получили значительного распространения, однако имеют неплохие перспективы. Среди процессов жидкофазного восстановления выделяется процесс «Ромелт», разработанный в Московском институте стали и сплавов (МИСиС) под руководством профессора В. А. Роменца и реализованный в 1985 году на полупромышленной установке в Липецке. Одностадийный процесс жидкофазного восстановления «Ромелт» обеспечивает переработку железосодержащих материалов (в виде пыли железной руды, шлаков, шламов) с применением некоксующихся углей.

Разработанная технология позволяет получить чугун, отличающийся от доменного пониженным содержанием кремния и марганца (0,05-0,15%). Она не требует применения кокса и позволяет использовать в качестве основного топлива неподготовленные энергетические угли с различным содержанием летучих веществ (до 35-40%), дает возможность перерабатывать любые виды мелкого (не более 20 мм) железосодержащего сырья (руду, концентрат, пыль, шлам, окалину, стружку) без предварительного окускования и при относительно низком содержании железа. Производительность процесса достигает 300-400 тыс. т в год, что позволяет использовать его в условиях малого производства. Агрегат жидкофазного восстановления более компактен, чем агрегат твердофазного восстановления. К недостаткам данного процесса следует отнести пониженный по сравнению с доменным процессом тепловой КПД и низкую скорость восстановления.

Среди процессов твердофазного восстановления следует особо отметить процесс Midrex, разработанный в 1965-1967 годах американской компанией MidlandRoss. Первые две шахтные печи производительностью по 200 тыс. т в год были запущены в 1969 году в Портланде (США). В 80-е годы на ОЭМК (Россия) был построен крупнейший в Европе цех с 4 печами Midrex с проектной производительностью 1,7 млн. т в год. В качестве железорудного материала здесь используется кусковая руда, окатыши или агломерат, а в качестве восстановителя – природный газ.Преимуществом данного процесса является повышенная чистота окатышей по сере, фосфору и пониженное содержание углерода в окатышах. Производительность достигает 4 млн. т в год. Весь цикл восстановления занимает 8-12 часов.

Среди комбинированных процессов следует выделить процесс Соrех, разработанный германской фирмой KorfStahl в 1976 году. Он сочетает в себе твердофазное и жидкофазное восстановление. В нем используются отдельные реакторы для восстановительной и плавильной стадий. Полупромышленное опробование на разных видах сырья и топлива было проведено с 1981 по 1987 годы на установке производительностью 60 тыс. т чугуна в год в Кельне (Германия). В дальнейшем технологию приобрела австрийская фирма VoestAlpine.

В основе процессов Соrех лежит концепция доменной печи, модифицированная для обеспечения возможности прямого применения некоксующихся углей для восстановления железа из кусковой руды, окатышей и агломерата. Производительность установок достигает 700 тыс. т в год. Из-за наличия первой стадии предварительного высокого восстановления этот процесс имеет более высокий расход топлива, чем доменный. Преимущества этого и других комбинированных процессов заключаются в более рациональном использовании тепла отходящего газа и более высокой степени использования восстановителя.

На сегодня в мире наиболее широко распространены технологии Midrex. Лидирующие позиции в данном сегменте рынка эта компания удерживает последние 30 лет. По технологиям Midrex в прошлом году было получено около 40 млн. т металлизированных окатышей или 60% от общемирового производства. Крупнейшим «парком» установок Midrex владеет корпорация ArcelorMittal, имеющая предприятия по выпуску восстановленного железа в Германии, Канаде, Мексике, Тринидаде и Тобаго и ЮАР, общие мощности которых (созданные в 1971-1999 годах) составляют около 6 млн. т в год, или 13% мирового производства губчатого железа по данной технологии.

Для массового производства стали в современной металлургии основными исходными материалами являются передельный чугун и стальной скрап (лом). По химическому составу сталь отличается от передельного чугуна меньшим содержанием углерода, марганца, кремния и других элементов. Поэтому выплавка стали - передел чугуна (или же чугуна и скрапа) в сталь - сводится к проведению окислительной плавки для удаления избытка углерода, марганца и других примесей. При выплавке легированных сталей в их состав вводят соответствующие элементы.

Первыми способами получения стали из чугуна были кричный способ (XII-XIII вв.) и затем пудлинговый способ (конец XVIII в). Продуктом плавки были крицы - небольшие куски - комья сварившихся между собой зерен металла. Получение плотного металла - сварочного железа - происходило при последующей ковке или прокатке. Во второй половине XIX в. появились и получили наибольшее развитие высокопроизводительные способы: бессемеровский (1856 г.) и томасовский процессы (1878 г.). Их недостатками являются невысокое качество стали и ограниченность сырьевой базы, так как можно было использовать лишь некоторые чугуны (с определенным содержанием Si, S, Р).