Смекни!
smekni.com

Технология обработки детали 2 (стр. 3 из 5)

Расчет припусков на обработку отверстия Ø30Н6 приведен в таблице 1.7.

Таблица 1.7 – Расчет припусков и предельных размеров по технологическим переходам на обработку отверстия корпуса Ø30Н6

Технологические переходы обработки поверхностиØ30h6 Элементы припуска Расчетный припуск 2zmin расчетный размер dр, мм Допуск δ, мкм Предельный размер, мм Предельные значение припусков, мкм
Rz h ρ ε dmin dmах
1 2 3 4 5 6 7 8 9 10 11 12
Заготовка 200 300 514 50 840 27,375 28,215
Растачивание предварительное 25 25 31 50 2033 27,375 520 29,408 29,928 1713 2033
– черновое 50 50 26 252 29,408 210 29,66 29,87 92 252
– чистовое 20 20 21 218 29,66 84 29,878 29,962 58 218
– тонкое 10 5 15 122 29,878 52 29,948 30 38 70

Назначим расчетные формулы для определения припуска, обработка внутренних поверхностей вращения:

(1.3)

Суммарное значение пространственных отклонений для заготовки определяем по формуле:

(1.6)

где ρр – отклонение расположения отверстия относительно технологических баз;

ρП – перекос отверстия на 1 мм диаметра.

Остаточные пространственные отклонения после чернового и чистового растачивания определяем по формуле:

(1.7)

где ky – коэффициент уточнения: для чернового растачивания – ky = 0,06; для получистового растачивания – ky = 0,05; для протягивания – ky =0,04;

На основании записных данных в таблице производим расчет минимальных значений межоперационных припусков:

Минимальный припуск под растачивание:

- черновое:

- получистовое:

- чистовое:

- тонкое:

Определяем расчетный размер dр по переходам, начиная с конечного:

Назначаем допуски для заготовки и для каждого перехода:

ТЗАГ = 840 мкм;

Т1 = 520 мкм;

Т2 = 210 мкм;

Т3 = 84 мкм;

Т4 = 52 мкм;

Определяем предельные размеры :

Определим предельные значения припусков:

На основании данных расчета строим схему графического расположения припусков и допусков по обработке отверстия Ø30Н6 (рисунок 1.4).

Общие припуски Zomin и Zomax определяем, суммируя промежуточные припуски:

TЗ – TD = 2Zmin – 2Zmax

840 – 52 = 788 мкм

2573 – 1785 = 788 мкм


Чертим схему припусков:

Рисунок 1.4 – Схема графического расположения допусков

1.10 Разработка технологических операций

Учитывая среднесерийный тип производства, производим выбор моделей станочного оборудования. Необходимо производить выбор моделей, которые обеспечивали бы наименьшие трудовые и материальные затраты, а также себестоимость обработки заготовки. Характер производства определяет приоритет выбора в пользу полуавтоматных и универсальных станков.

Для обработки внутренних поверхностей корпуса выбираем токарный полуавтомат 16К20Т1, что позволит обработать цилиндрические поверхности детали (1, 2, 4, 5, 6, 7, 8, 9, 11) с одной установки. При обработке поверхностей 12 и 20 требуется установка на специальное токарное приспособление. Для обработки отверстий (отв. 16 и 4 отв. 3) выбираем сверлильный станок 2А125. Для обработки плоских поверхностей (пов. 13, 14, 15, 17) выбираем фрезерный станок 6Р82.

Операционный маршрут обработки детали “Корпус кронштейна” – 9019.10.01.118 представлен в комплекте технологической документации проекта.

1.11 Расчет режимов резания

Рассчитаем режимы резания по эмпирическим формулам для операции 005 (токарная). Принимаем припуски по таблицам припусков по справочнику Балабанова (с. 194-195). Коэффициент Cv, подачи (с согласованием с подачами станка) и стойкость инструмента принимаем по таблицам [2, с.265-284].

Мощность выбранного станка по паспорту 10 кВт.

Условие применяемости станка: N ≤ Nст.

Находим поправочный коэффициент Kр:

Kр = Kφр * Kγр * Kλр * K * Kmp = 0.89*1*1*0.93*

= 0.766

где Kφр, Kγр, Kλр, K – коэффициенты, учитывающие геометрию режущего инструмента (резца) [7, с. 275];

Kmp – коэффициент, учитывающий влияние качества обрабатываемого материала на силовые зависимости [7, с. 264];

Обработка отверстия Ø30 мм:

Режимы резания для перехода 1:

Тогда действительная скорость резания будет равна:

Находим силу резания Pz (x = 1, y = 0.75, n = 0):

Pz = 10*Ср*tX*SY*Vn*Kp = 10*92*2*0,70,75*1*0.766=1078.6 H

Мощность резания будет равна:

Режимы резания для перехода 2:

Тогда действительная скорость резания будет равна:

Находим силу резания Pz:

Pz = 10*Ср*tX*SY*Vn*Kp = 10*92*1,1*0,50,75*1*0.766= 4609 H


Мощность резания будет равна:

Режимы резания для перехода 3:

Тогда действительная скорость резания будет равна:

Находим силу резания Pz:

Pz = 10*Ср*tX*SY*Vn*Kp = 10*92*0,4*0,50,75*1*0.766= 167,6 H

Мощность резания будет равна:

Режимы резания для перехода 4:


Тогда действительная скорость резания будет равна:

Находим силу резания Pz:

Pz = 10*Ср*tX*SY*Vn*Kp = 10*92*0,2*0,50,75*1*0.766= 83,8 H

Мощность резания будет равна:

Режимы резания для перехода 5:

Тогда действительная скорость резания будет равна: