Смекни!
smekni.com

Расчет характеристик участка линейного нефтепровода (стр. 2 из 3)

В качестве объема W выберем цилиндр, вырезанный из потока двумя перпендикулярными к оси трубы сечениями, отстоящими друг от друга на расстоянии DХ1. Считая DХ1 малой величиной, уравнения можно записать в виде

(3)

(4)

где S0 – площадь основания выделенного цилиндра

; d – диаметр трубы.

Считая величины

и
постоянными по сечению и переходя к средней скорости потока v по сечению трубы по правилу

. (5)

Из уравнений (3) и (4) получим.

(6)

(7)

Коэффициент

введен для учета профиля скорости по сечению трубы. Для ламинарного течения
.

Сила

определяется полем сил тяжести

. (8)

Силу

, действующую на поверхность объема интегрирования, разделим на две составляющие:

- сила, обусловленная разностью давлений на основании цилиндра

- сила, определяемая трением объема стенки

(9)

здесь

- боковая поверхность цилиндра

- касательное напряжение трения на стенке трубы

;
- коэффициент сопротивления.

Раскладывая

в ряд Тейлора и ограничившись первыми двумя членами, получим.

(10)

Подставив (8) и (10) в (7), запишем законы сохранения массы и количества движения для движения жидкости по нефтепроводу в следующем виде:

(11)

(12)

Введем дополнительное уравнение. Это соотношение между скоростями изменения плотности и давления:

(13)

где С – скорость звука в жидкости.

Второе уравнение можно упростить объединив слагаемые

и
. Такое упрощение возможно, если принять суммарное давление в точке х равным
, где
- высота подъема трубопровода от нулевой точки. В нашем случае
. Слагаемое
- характеризует изменение давления вдоль трубопровода за счет скорости напора.

Для несжимаемой жидкости, когда

и
вдоль трубы постоянны, это слагаемое равно нулю. Учитывая уравнение (13), получим обычно используемую математическую модель для описания движения жидкости в линейном трубопроводе:

(14)

Система уравнений (14) нелинейна.

Линеаризуем эту систему, приняв во внимание

Линеаризованная система имеет вид:

(15)

Приняв во внимание, что в длинном нефтепроводе у нас будут отсутствовать инерционные силы, первое слагаемое во втором уравнении можно принять равным нулю.

Система уравнений примет вид:

(16)

Перейдем к реальным параметрам трубопровода.

– массовый расход.

Получим:

(17)

Примем

а
.

(18)

Система дифференциальных уравнений (18) является математической моделью линейного нефтепровода.

Статический режим работы линейного нефтепровода.

Для рассмотрения статического режима линейного нефтепровода воспользуемся вторым уравнением системы (18)

где
.

Т.к.

получим.

Приняв во внимание то, что

получим.

Проинтегрировав это уравнение

получим:

Коэффициент гидравлического сопротивления определяется по формуле А. Д. Альтшуля.

Число Рейнольдса

определяется по формуле
где
– вязкость. Число Рейнольдса безразмерная величина.

Проверим.

Вычислим число Рейнольдса:

.

Построим график статического режима линейного трубопровода.

Динамический режим работы линейного нефтепровода.

Допустим, что у нас был установившийся режим, характеризующийся при:

.

Пусть в какой-то момент времени t = 0 на входе Р

был создан скачек:
, но давление на

выходе нефтепровода не изменилось. Нас будет ин-

тересовать как изменится давление в любой точке t

нефтепровода.

Воспользуемся ранее выведенной системой дифференциальных уравнений (18).