Смекни!
smekni.com

Расчет основных проектных параметров ЖРД (стр. 4 из 8)


5. Определение габаритов топливных баков

Масса топлива, необходимого для обеспечения работы двигательной установки в течение времени полета определяется как:

,

где

– массовый расход топлива ДУ;

кг/с;

– коэффициент запаса топлива;

;

– время работы ДУ;

с;

Дополнительный запас топлива в баках, учитываемый коэффициентом

, необходим для гарантированного обеспечения работы ДУ в течение заданного времени
при любых допустимых отклонениях расходов компонентов.

Масса топлива, необходимая для обеспечения работы ДУ равна:

кг;

Масса горючего:

кг;

Масса окислителя:

кг;

Объем бака горючего:

м3;

Объем бака окислителя:

м3;

Коэффициент объема бака

учитывает объём газовой подушки, а так же наличие внутри бака конструкционных элементов

;

Для определения осевых габаритов баков ракеты в первом приближении, форма баков принимается цилиндрической.

м;

м;

где d– диаметр ступени ракеты, равный 1,5 м.

В действительности, форма баков отличается от цилиндрической. Это связано с кривизной днищ. Однако учет влияний этих факторов затруднен до проведения оценки габаритов всех элементов двигательной установки. Данные об осевых габаритах баков ракеты определяют высоту столба жидкого компонента, необходимую в дальнейшем для определения максимально допустимого числа оборотов ТНА из расчета насоса окислителя на кавитацию.

6. Определение основных параметров и габаритов насосов

6.1 Определение параметров насосов

Окислителем в двигательной установке является жидкий фтор. Для этого компонента целесообразно использовать радиальный шнеко-центробежный насос. Горючим является водород, для которого целесообразно использовать многоступенчатый центробежный насос.

Массовые расходы окислителя и горючего равны:

Из уравнения баланса мощностей известно:

Отсюда найдём реальные мощности насосов:

Потребные мощности насосов можно определить по формулам:

где

– КПД насосов окислителя и горючего, принимаемые приближённо равными 0,65, H – напор насосов:

где

– давления на выходе из насоса и на входе в насос.

Определим эти давления по следующим формулам:

Значения

берутся из расчёта баланса мощностей, значение
так же выбирается, но оно не должно быть меньше, чем
для компонента прокачиваемого через насос. Определим значения
для компонентов.

По [6] для

при температуре
:

Для

при
:

Выберем

, соответствующие этим значениям, задаваемым при балансе мощностей.

Определим напоры насосов:

Зная напоры насосов, можно определить потребные мощности:

Определим максимальную угловую скорость для насосов из кавитационного коэффициента быстроходности:

где

– срывной коэффициент быстроходности; для выбранного типа насоса он принимается равным 3000.

Исходя из конструктивных соображений, примем

, или
. С учётом того, что насосы расположены на одном валу, скорость насоса горючего будет равна
.

Определим коэффициент быстроходности насоса окислителя:

Данный насос является центробежным.

Примем количество ступеней насоса горючего равным 4. Ступени расположим последовательно. Тогда напор, создаваемый одной ступенью, будет равен:

Коэффициент быстроходности одной ступени будет равен:

Все ступени будут центробежными.

Определим крутящие моменты насосов окислителя и горючего:

Приняв

, определим диаметр вала:

Из конструктивных соображений примем

и диаметр втулки, равный

6.2 Определение параметров турбины

После определения параметров насосов: потребной мощности и угловой скорости вращения становится возможным определение параметров предкамерной турбины.

Мощность

, потребляемая насосами ТНА равна:

Мощность, снимаемая с турбины, равна мощности потребляемой насосами:

Мощность

, снимаемая с турбины, может быть выражена как:

где

– массовый расход газа через турбину;

– Удельная адиабатная работа газа;

– полный КПД турбины; для турбины, работающей по замкнутой схеме, в первом приближении величина выбирается как:

.

Удельная адиабатная работа газа в турбине определяется как:

где

– показатель адиабаты,

;

– газовая постоянная рабочего тела турбины,
– температура рабочего тела турбины,
– давление газа на входе в турбину,
– степень понижения давления на турбине.