Найдём
Истечение газов – докритическое. Найдём скорость истечения по формуле:
Из уравнения расхода через струйную форсунку найдём потребную площадь истечения:
Расходное отверстие – кольцо со внутренним диаметром равным наружному диаметру форсунки окислителя
Найдём минимальный внешний диаметр двухкомпонентной форсунки ядра:
Возьмём
Продольные размеры форсунки выбираются конструктивно, в соответствии с размерами форсунки окислителя.
Рисунок 9 – Двухкомпонентная форсунка ядра головки.
10.2 Расчет форсунки пристеночного слоя
Воспользуемся уравнением расхода:
где:
Найдём
Истечение газов – докритическое. Найдём скорость истечения по формуле:
Из уравнения расхода через струйную форсунку найдём потребную площадь истечения:
Найдём диаметр отверстия
Найдём внешний диаметр двухкомпонентной форсунки пристеночного слоя:
Продольные размеры форсунки выбираются в соответствии с размерами форсунок ядра.
Рисунок 10 – Однокомпонентная форсунка пристеночного слоя.
11. Расчёт охлаждения
При проектировании системы охлаждения ЖРД сначала определяют конструкцию охлаждающего тракта, способ охлаждения и основные размеры охлаждающего тракта, а затем расчётным путём проверяют, обеспечивается ли при этом охлаждение стенок двигателя. Проверочный расчёт охлаждения двигателя разбит на несколько этапов.
На первом этапе камера сгорания и сопло по длине разбивается на несколько участков и для каждого участка определяются его геометрические формы.
Далее ориентировочно задаются значения газовой стенки по длине канала и определяются значения конвективной составляющей по формулам (формулы приведены для цилиндрической нескоростной камеры):
где:
На втором этапе определяются лучистые тепловые потоки. Так как продуктами сгорания являются только двухатомарные газы, то доля лучистых потоков будет не велика.
После этого можно определить суммарный тепловой поток к стенке канала:
На следующем этапе проверяется достаточность расхода охладителя для снятия поступающего к стенкам тепла. Для этого используется уравнение теплового баланса:
где:
Отсюда можно найти температуру жидкости на выходе из тракта. Так же, при помощи уравнения теплового баланса находятся температуры охладителя на каждом участке.
На четвёртом этапе находятся коэффициенты теплоотдачи от стенки к жидкости на каждом участке с учётом формы и типа охлаждающего тракта, по методике, изложенной в [3].
Далее определяется температура «жидкостной» стенки и «газовой» стенки по формулам:
После этого полученные значения «газовой» стенки сравниваются с предварительно заданными на первом этапе. Если расхождение составляет более 5%, то расчёт производят заново, приняв предварительные значения «газовой» стенки равными промежуточным значениям, более приближенным к значениям, полученным на четвёртом этапе предыдущего расчёта.
В данной работе расчёт был произведён с использованием программного пакета MathCad. По результатам расчёта температура охладителя на выходе составила 153,7º К, что свидетельствует о том, что применять выбранную схему охлаждения нельзя. Для двигателей, охлаждаемых при помощи жидкого водорода в [3] рекомендуется использовать схему с подкипанием компонента в охлаждающем тракте, но необходимо так же провести исследования эффективности других методов теплозащиты (создание жидкостной плёнки).
Заключение
В данном проекте были произведены конструкторские расчёты двигательной установки на криогенных компонентах H2+F2. В результате была спроектирована двигательная установка со следующими параметрами:
Тяга на земле, кН | 100 |
Тяга в пустоте, кН | 104 |
Коэффициент избытка окислителя | 0,24 |
Удельный импульс на Земле, м/с | 3950,56 |
Удельный импульс в пустоте, м/с | 4135,2 |
Масса топлива, кг | 25,313 |
В проекте было произведено профилирование канала камеры сгорания и получены следующие геометрические характеристики:
Диаметр критического сечения, мм | 73,8 |
Диаметр сопла, мм | 362,4 |
Длина сопловой части, мм | 463 |
Диаметр цилиндрической части камеры, мм | 160 |
Профилирование докритической части канала производилось по методу двух дуг, закритической – по методу параболы.