Do – характерний розмір перетину прямокутного дифузора, м;
л - коефіцієнт опору прямокутної труби (л = 0,06);
Dr - гідравлічний діаметр прямокутного вхідного отвору ШУТ, м.
Акустична ефективність нової конструкції шумоглушника-утилізатора для ГПА визначається за методикою, розробленою в лабораторії охорони праці ТОВ „ВНІІгаз” за участю фахівців ВАТ „Укргазпроект”, в тому числі і автора, і Московського автомеханічного інституту. Вона являє собою суму
ДL= ДLp+ ДLa, дБ, (13)
де ДLp і ДLa - акустична ефективність відповідно до реактивної і абсорбційної частини ШУТ, дБ.
Розрахунок абсорбційної частини ШУТ зводиться до акустичного розрахунку пластинчастого глушника шуму.
Акустична ефективність реактивної частини ШУТ визначається для багатокамерного глушника за формулою:
дБ, (14)де:
(15)де m - ступінь розширення, рівна відношенню площі перетину камери Sк до площі поперечного перерізу трубопроводу;
k=2рf/c - хвильове число, м-1;
f - частота звуку, l/с;
с - швидкість звуку в потоці вихлопних газів, м/с;
lk - довжина камери, м;
lTP – довжина трубопроводу, м;
N - число камер.
Як критерій оптимальності при виборі акустичних характеристик прийнятий максимум акустичної ефективності глушника. При визначенні його енергетичних характеристик науково обґрунтовані вибір і прийнятий як критерій оптимальності мінімум питомих наведених витрат. Таким чином, при розробці шумоглушників-утилізаторів для ГПА вирішується двокритеріальне завдання оптимізації.
ВИСНОВКИ
Вирішено важливу науково-прикладну проблему підвищення ефективності магістральних газопроводів на пізній стадії експлуатації шляхом встановлення автором конкретизації закономірностей впливу на аварійність природних та техногенних факторів, методів та методик для визначення залишкового ресурсу лінійної частини трубопроводів та обладнання компресорних станцій, а також енергоекологічних безпечних засобів та методів.
Основні наукові та практичні результати, висновки і рекомендації роботи:
1. Запропонована, забезпечена кількісною інформацією, аналітичні залежності для визначення показника прояву природних та техногенних факторів на частоту відмов газопроводу в конкретному районі; для розрахунку локального значення інтенсивності аварій на окремій ділянці вітчизняних газопроводів проведено бальне оцінювання окремих факторів впливу; розроблена загальна схема послідовності вивчення відмов при експлуатації газопроводів, що складається з чотирьох етапів: на першому етапі виявляються основні потенційні небезпеки, на другому – проводиться аналіз і кількісна оцінка можливих наслідків, на третьому визначаються інтенсивність (частота) та ймовірність аварійних подій, а на четвертому етапі розраховуються збитки і втрати від окремих аварій та величина прогнозованого ризику..
2. На основі теоретичних та експериментальних досліджень удосконалено метод оцінки ймовірності руйнування магістральних газопроводів за допомогою індикаторів навантаженості на основі закономірностей кінетики втомного руйнування. Метод дає змогу прогнозувати залишковий ресурс та критичні деформації окремих ділянок газопроводів. Розроблено методику прогнозування залишкового ресурсу з урахуванням пульсацій тиску та ступеня пошкодження ділянки газопроводу.Проведено експериментальні дослідження моделей-“вирізок” з газопроводу діаметром 820 мм і товщиною стінки 8 мм (матеріал – сталь 19Г) без дефектів і з локальними механічними дефектами. Розраховано залишковий ресурс пошкодженої ділянки газопроводу, і відмічено, що за даних параметрів дефектів і навантаженості дефект не несе загрози руйнування, але, якщо врахувати відключення тиску в газопроводі (один раз на рік експлуатації), то залишковий ресурс значно зменшується і становить біля 18 років експлуатації.
3. Встановлено закономірності зміни технічного стану газоперекачувального агрегату в процесі експлуатації, який характеризується ефективним ККД, і на їх основі запропоновано методику визначення критичеих значень, що дозволяє визначити залишковий ресурс ГПА.
4. Вперше в результаті виконаних теоретичних та експериментальних досліджень вирішена науково-технічна задача, що стосується розробки основ теорії та практики підвищення ефективності та екологічної безпеки газоперекачувальних агрегатів з газотурбінним приводом шляхом впровадження модернізованих малотоксичних камер згорання на основі трубчатих пальників. Це дозволило отримати ефективність поєднання основних стадій робочого процесу у напрямку інтенсифікації сумішоутворення, стабілізації горіння і мінімізації емісії токсичних NOx та СО при високих енергетичних показниках; високі пускові властивості трубчастих модулів і всережимність їхньої ефективної роботи при різних надлишках повітря у камері згорання газоперекачувальних агрегатів.
5. На основі проведених досліджень обґрунтовано науково-технічний напрям підвищення ефективності експлуатації компресорних станцій магістральних газопроводів шляхом використання вторинних енергоресурсів – одержання рідкої вуглекислоти з димових газів опалювальних котелень; проведено розрахунок вмісту основних компонентів продуктів згорання природних газів при різних коефіцієнтах надлишку повітря у межах 0,88-0,92 і встановлено, що при потужності 4,2-4,6 МВт із димових газів можна одержувати 12 т/добу рідкої вуглекислоти.
6. Розроблені науково-технічні заходи та засоби щодо підвищення акустичної ефективності компресорних магістральних газопроводів та запропонована розроблена автором і теоретично досліджена стосовно газоперекачувальних агрегатів ГПА-Ц 63 принципово нова конструкція шумоглушника-теплоутилізатора з аеродинамічним опором зі сторони вихлопних газів 197 Па та з акустичною ефективністю 11.4-12 дБ.
7. Результати дисертаційної роботи методи кількісного аналізу аварійного ризику газотранспортних об’єктів підвищеної небезпеки схвалені і взяті для використання Управлінням Держпромгірнаглядом МНС України; розроблену трубчасту технологію спалювання газу у камерах згорання впроваджено на Бердичівській компресорній станції УМГ "Київтрансгаз України"; створені шумоглушники-утилізатори для газотурбінних агрегатів ГПА-Ц-63 та ГТК-10-І взяті для виготовлення Ухтинським експериментальним механічним заводом; розроблена методика для визначення залишкового ресурсу трубопроводів впроваджена на УМГ "Прикарпаттрансгаз".
СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ
Монографії
1. Шидловський О.С., Долінський А.А., Стогній Б.С., Говдяк P.M. та ін. Інноваційні пріоритети паливно-енергетичного комплексу України.- К.: Українські енциклопедичні знання, 2005.-493с.
2. Говдяк P.M., Семчук Я.М., Чабанович Л.Б., Шелковський Б.І., Кривенко Г.М. Енергоекологічна безпека нафтогазових об'єктів.- Івано Франківськ: Лілея - НВ, 2007.-554 с.
3. Говдяк P.M., Коснирєв Ю.М. Кількісний аналіз аварійного ризику газотранспортних об'єктів підвищеної небезпеки.- Львів, Кальварія, 2007.-160с.
4. Экономическая безопасность государства и интеграционные формы ее обеспечения // Под. Ред. Г.К. Вороновского, И.В. Недина. – К.: Знания Украины. – 2007. – 392 с.
Статті у наукових фахових виданнях з технічних наук
5. Семчук Я.М., Говдяк P.M., Кривенко Г.М., Дрогомирецький Я.М.Аналіз сучасного стану досліджень надійності магістральних нафтогазопроводів та причин і умов їх відмови// Розвідка та розробка нафтових і газових родовищ.-2001.- №38.- С.159-166.
6. Семчук Я.М., Говдяк P.M., Кривенко Г.М., Гораль Л.Т. Технічний та екологічний ризик при експлуатації магістральних трубопроводів// Розвідка та розробка нафтових і газових родовищ.-2001.- №1.- С.68-71.
7. Семчук Я.М.,Говдяк P.M., Тимків Д.Ф. Основні напрямки розвитку концепції надійності магістральних газопроводів// Науковий вісник Ів.-Фр. нац. техн. ун-ту нафти і газу.: 2002.- №2(3).- С.76-80
8. Говдяк P.M., Семчук Я.М.Методичні основи визначення ризику, індексу небезпеки при проектуванні та експлуатації магістральних газопроводів // Науковий вісник Ів.- Фр. нац. техн. ун-ту нафти і газу.- 2002.- №2(3).- С.80-84
9. Карп И.Н., Говдяк Р.М., Калапунь И.М., Шелковский Б.И. Эффективное производство энергии на компрессорных станциях магистральных газопроводов // Экотехнологии и ресурсосбережение. – 2002 - № 3. – С. 12-24.
10.Говдяк P.M. Исследование и разработка мероприятий и оборудования для снижения уровня шума компрессорных станций// Экотехнологии и ресурсосбережение.- 2003.- №1.-С.50-57
11.Любчик Г.М., Говдяк P.M., Варламов Г.Б. та інші. Создание малотоксичных камер сгорания ГТУ// Экотехнологии и ресурсосбережение.- 2003.- №2.- С.65-73
12.Говдяк P.M., Шелковский Б.И., Любчик Г.М., Варламов Г.Б.// Актуальные проблемы модернизации газотурбинных и газоперекачивающих агрегатов. Экотехнологии и ресурсосбережение.- 2003.- №5.- С.66-72
13.Говдяк P.M., Міщенко В.П., Давидов Д.М. Поставки скрапленого природного газу- важливий чинник диверсифікації джерел газопостачання України// Нафтова і газова промисловість. -2003.- №1.- С 27-32.
14.Говдяк P.M. Стан і шляхи підвищення ефективності та надійності транспортування природного газу газотранспортною системою України// Розвідка та розробка нафтових і газових родовищ.-2003.- №2(7).- С.6-12.
15.Говдяк P.M., Бігун В.А., Поляченко Ю.М. Нові технічні рішення щодо електроживлення лінійних споживачів магістральних трубопроводів// Нафтова і газова промисловість. -2004.- №2.-С.33-34.
16.Говдяк P.M., Демченко Ю.В. Сучасні основи організації технологічного зв'язку на магістральних газопроводах// Нафтова і газова промисловість. -2004.- №3.- С.31-33.