Смекни!
smekni.com

Понятие и сущность выпаривания (стр. 4 из 5)

2.4.1.Расчёт кожухотрубного конденсатора.


Исходные данные:

Физико-химические показатели конденсата при этой температуре:



Тепло конденсации отводить водой с начальной температурой:

Примем температуру воды на выходе из конденсатора:


При средней температуре:


Вода имеет следующие физико-химические характеристики:

1.


Тепловая нагрузка аппарата:

2.


Расход воды:

3.


Средняя разность температур:

4. Принимаем Re=10000, определим соотношение n/z для теплообменника из труб диаметром 25х2 мм.


5. Уточнённый расчёт поверхности теплопередачи.

В соответствии с табл.11.4(1) соотношение n/z принимает наиболее близкое к заданному значение у теплообменника с диаметром кожуха D=600мм, диаметром труб d=25х2 мм, числом ходов z=6 и общим числом труб n=196.

В зависимости от длины труб эти теплообменники имеют поверхность теплопередачи 46.61 и 91 м^2.


Действительное число Re2 равно:

Коэффициент теплоотдачи к воде определяем по формуле:

Коэффициент теплоотдачи от пара, конденсирующегося на пучке вертикально расположенных труб, определим по формуле:

Сумма термических сопротивлений стенки труб из нержавеющей стали и загрязнений со стороны воды и пара равна:

Тогда уточнённый коэффициент теплопередачи равен:

Требуемая поверхность теплопередачи составит:

5. Расчёт гидравлического сопротивления в трубах.


Скорость воды в трубах:

Коэффициент трения равен:

Где D=(0.2*10)^-3м.

Скорость воды в штуцерах равна:



Гидравлическое сопротивление рассчитывается по формуле:

2.4.2.Расчёт пластинчатого подогревателя.

Исходные данные:


При средней температуре, равной 36 С, кровь имеет следующие физико-химические характеристики:


Для нагрева использовать насыщенный водяной пар давлением 0.11Мпа температурой конденсации равной 102.32 С.

Характеристики конденсата при этой температуре:


1.Тепловая нагрузка аппарата составит:

2.Расход пара определяется из уравнения теплового баланса:



3.Средняя разность температур:

4.Рассмотрим пластинчатый подогреватель поверхностью 2.0 м^2, поверхностью пластин 0.2м^2, число пластин N=12 (согласно табл.11-13(1)).

5.Скорость жидкости и число Re в шести каналах с плошадью поперечного сечения канала 0.0016м^2 и эквивалентным диаметром канала 0.0076м (табл.11-14(1)) равна:

Коэффициент теплоотдачи к жидкости определяем:


(для пластин площадью 0.2 м^2 а=0.086, b=0.73).

Для определения коэффициентов теплоотдачи от пара примем, что Dt>=10 C, тогда в каналах с приведённой длиной L=0.45(11.14(1)) получим:

Термическим сопротивлением со стороны пара можно пренебречь. Толщина пластин 1.2 мм(табл.11-14 (1)), материал – нержавеющая сталь с l=17.5Вт¤(м*К). Сумма термических сопротивлений стенки пластин и загрязнений со стороны жидкости составит:


Уточнённый коэффициент теплопередачи составит:


Проверим правильность принятого допущения относительно Dt:




6. Гидравлическое сопротивление пластинчатого подогревателя определяется по формуле 2.37(1).

Диаметр присоединяемых штуцеров равен 0.05 м. (табл.2.14{1}).

Скорость жидкости в штуцерах:



Коэффициент трения определяется по формуле:

Тогда гидравлическое сопротивление составит:

2.5.Гидравлический расчёт продуктовой линии и подбор нагнетательного оборудования.

2.5.1Гидравлический расчёт трубопровода.

Примем скорость движения крови в трубопроводе равной 2м/с. Тогда внутренний диаметр трубопровода круглого сечения будет определяться по формуле:


Где:


(объёмный расход крови)

Принимаем стандартный трубопровод с наружным диаметром канала d=16мм и толщиной стенок 2мм. Тогда уточнённая скорость движения крови в трубопроводе будет равна:

Определение потерь на трение и местные сопротивления.

Определим критерий Рейнольдса:


Re>10000, следовательно, режим движения будет турбулентный. Абсолютную шероховатость трубопровода примем:


Тогда относительная шероховатость трубопровода будет:


Далее получим:


Re>560/e, следовательно, в трубопроводе имеет место автомодельная зона по отношению к Re, и расчёт коэффициента трения l следует проводить по формуле:


Определим сумму коэффициентов местных сопротивлений отдельно для всасывающей и нагнетальной линий.

Для всасывающей линии:

вход в трубу: x=0.5;

изгиб: x=2.1;

вентиль: x=10.8 (для d=0.013м);

x=8.01 (для d=0.02м);


Методом экстраполяции находим для d=0.016 x=10.0. Умножая на поправочный коэффициент К=0.925, получаем x=9.25.