Испарители и парообразователи широко применяются для уменьшения и восполнения потерь конденсата. Их можно разделить на аппараты с естественной циркуляцией воды между трубками и с принудительной циркуляцией воды в кипятильных трубках.
Давление с испарителя выбирается таким образом, чтобы обеспечивать нужную температуру кипения. Поскольку испарители часто работают под вакуумом, то температура в них ниже нормальной температуры кипения.
В испарителях, в которых жидкость движется снизу вверх по вертикальным трубам, температура кипения жидкости внизу выше, чем вверху, из-за большего гидростатического давления. Таким образом, в нижней части труб кипение отсутствует и температура увеличивается до достижения температуры кипения, соответствующей локальному давлению. Затем возникает кипение вследствие большого подвода теплоты и мгновенного парообразования в перегретой жидкости, и температура уменьшается. Следовательно, разность температур в середине труб меньше, чем на концах, что может привести к значительному снижению характеристик в вертикальных испарителях (как с короткими, так и с длинными трубами), а также испарителях типа «корзины». Для повышения концентрации растворов необходимо учитывать рост температуры кипения при увеличении концентрации.
В качестве примера испарителя воды с естественной циркуляцией на рис.7 представлен вертикальный аппарат. Коэффициент теплопередачи 3000-4000 Вт/м2∙К. Естественная циркуляция в этом аппарате происходит вследствие того, что образующаяся в кипятильных трубках пароводяная эмульсия имеет меньшую плотность, чем вода в кольцевом зазоре между корпусом и трубной системой, где ей сообщается значительно меньшее удельное количество тепла на единицу объема.
Рис.7 Вертикальный испаритель:1- парообразующее пространство;
2- патрубок для подачи греющего пара;
3-патрубок для подачи выпариваемой жидкости;
4- нижняя крышка;
5- отвод конденсата пара;
6- трубка для сдувок;
7- греющая камера;
8- трубка для сдувок неконденсируемого газа;
9- дренаж сепаратора;
10- сепаратор;
11- патрубок для отвода сухого пара.
При этом в трубках устанавливается подъемное движение пароводяной эмульсии, а в кольцевом зазоре — опускное движение воды. Паровые пузырьки по выходе среды из трубок переходят в паровой объем. Уровень воды в аппарате поддерживается с помощью поплавкового регулятора питания выше верхней трубной решетки. Первичный (греющий) пар поступает в межтрубное пространство греющей камеры. Для отделения влаги из вторичного пара в верхней части парового пространства встроено сепарирующее устройство.
Паропреобразователь - теплообменный аппарат для испарения воды; разновидность испарителя, отличающаяся тем, что конечным продуктом рабочего процесса является не дистиллят (питательная вода), а пар водяной.
Библиографический список
1. Лебедев П.Д. Тепломассообменные сушильные и холодильные установки. М.: Энергия, 1972 – 320с.
2. Виноградов С.Н. Выбор и расчёт теплообменников. Пермь: ПГУ, 2001 – 100с.
3. Касаткин А.Г. Основные процессы и аппараты технической технологии. М.: Химия, 1970 – 374с.
4. Дытнерский Ю.И. Процессы и аппараты технической технологии. Ч.1 М.: Химия, 1995 – 400с.
5. Мартыненко О.Г. Справочник по теплообменникам. Т.2. М.: Энергоатомиздат, 1987 - 352с.