Смекни!
smekni.com

Определение оптимальных настроек ПИ-регулятора в АСР со звеном второго порядка с опозданием (стр. 5 из 5)

Таким образом, для

и
при помощи одной из номограмм А.П.

Копеловича для апериодического процесса

Рисунок 12. Номограмма Копеловича для апериодического процесса найдём

Þ

Þ
с.

3.15 Сравнение переходных процессов регулирования с оптимальными настройками ПИ-регулятора, полученными различными методами

Рассмотрим влияние оптимальных параметров ПИ-регулятора на переходный процесс регулирования, полученных следующими методами:

1. методом Копеловича

с.

2. расчетным (аналитическим) методом по линии m=const=0.48

с

3. методом Кона

c.

Рисунок 12 Структурная схема АСР для инерционного объекта 2-го порядка с запаздыванием.

Рисунок 13.


1 – ПП регулирования с настройками ПИ-регулятора, рассчитанными по расширенной КЧХ;

2 – ПП регулирования с настройками ПИ-регулятора, рассчитанными по методу Кона;

3 – ПП регулирования с настройками ПИ-регулятора, рассчитанными по методу Копеловича;

Вывод: в даннойкурсовой работе для инерционного объекта управления второго порядка с запаздыванием был выбран ПИ-регулятор. Оптимальные настройки ПИ-регулятора были расчитаны тремя способами: аналитическим методом (при помощи расширенной КЧХ), методом Л.И. Кона, методом Копеловича. Таким образом, получив три переходных процесса регулирования при помощи соответствующего инженерного пакета программ, был проведен сравнительный анализ трёх методов. При выборе настроек по методу Копеловича, первый максимум Δx1=0.084наименьший, но имеет наибольшее время регулирования tp=720. Аналитический метод даёт большое Δx1=0.1, и имеет наименьше время регулирования tp=600 . Метод Кона дает средний результат: Δx1=0.097, tp=655. Учитывая также простоту расчета настроек по методу Кона, данный метод является наиболее удобным в инженерной практике . Также была построена КЧХ разомкнутой АСР, которая позволила найти запас устойчивости по модулю (С=0,76) и по фазе (g= 54 ). В результате были сформированы знания теории линейных одноконтурных автоматических систем регулирования (АСР); закрепились умения применять на практике инженерные способы выбора настроек регулятора и анализа переходных процессов регулирования с использованием ЭВМ, а также приобретены профессиональные знания путём моделирования на ЭВМ, графических построений и сравнительного анализа результатов.


Таблица 2 Сведенная таблица основных результатов курсовой работы

Способ определения Результат
Кр Ти m Δx1 c γ tP
Вычисления на ЭВМ и граф. построения 4.1 15.7 0.48 0,1 0.76 54 600
Настройки по Кону 4.5 18.15 0.37 0,097 - - 655
Настройки по Копеловичу 5.3 18.6 0.37 0,084 - - 720

3.16 Аналитическое определение переходного процесса регулирования


Литература

1. Методические указания и таблицы для выбора настроек ПИ– и П – регуляторов в одноконтурных системах регулирования тепловых объектов с запаздыванием. /Л.И.Кон. – Одесса: ОПИ, 1975

2. Климовицкий М.Д., Копелович А.П.. Автоматический контроль и регулирование в чёрной металлургии: Справочник. – М.: Металлургия, 1967.-с.372-378; 417-425.

3. Иващенко Н.Н.. Автоматическое регулирование. – М.: Машиностроение, 1978. – с. 403-420.

4. Стефани Е.П. Основы расчёта настройки регуляторов теплоэнергетических процессов. – М.: Энергия, 1972.-с.198-211; 330-341.

5. Методические указания по методике моделирования на аналоговых вычислительных машинах / Ю.К.Тодорцев, А.Н.Гайдар, В.Г.Килимник – Одесса: ОПИ, 1982.

6. Попович М.Г., Ковальчук О.В.. Теорія автоматичного керування: Підручник для вищих технічних закладів освіти. – К.: Либідь, 1997.

7. Головко Д.Б., Рего К.Т., Скрипник Ю.О.. Автоматика і автоматизація технологічних процесів. – К.: Либідь, 1997.