Требуемая чувствительность измерений предопределяет выбор тензорезисторов проводникового или полупроводникового типа. При этом следует иметь в виду,, что высокочувствительные полупроводниковые тензорезисторы для целей так называемой общей тензометрии мало пригодны из-за существенной величины температурных и других погрешностей.
Разброс метрологических характеристик тензорезисторов увеличивается как с уменьшением, так и с увеличением базы. В первом случае увеличение разброса вызвано ухудшением условий передачи деформации на решетку, во втором — трудностями, связанными с надежным закреплением большебазных тензорезисторов на поверхности объекта исследования. По этим причинам во всех случаях, когда позволяют задачи исследований, применяют тензорезисторы с базами от 5 до 50 мм. Выбирая малобазные, особенно микропроволочные тензорезисторы, необходимо иметь в виду, что габаритная длина последних может в 1,5—2,5 раза превышать активную базу.
Номинальное сопротивление тензорезисторов прежде всего должно соответствовать входным данным применяемых тензометрических преобразователей или приборов. При тензометрировании машин чаще всего применяют тензорезисторы с номинальным сопротивлением 100—400 Ом.
При меньших величинах номинальных сопротивлений начинает в большей степени сказываться влияние переходных сопротивлений различных контактов, входящих в измерительные цепи (например, токосъемников или штепсельных разъемов), а также влияние сопротивлений измерительных проводов. Поэтому лучше использовать тензорезисторы с большими номинальными сопротивлениями. Вместе с тем чрезмерно большие сопротивления (более 400 Ом) являются причиной увеличения уровня электрических и магнитных помех. Меньшие значения номинальных сопротивлений выбирают только при тензометрировании без усилителей, когда требуется согласовать выходное сопротивление моста с критическим сопротивлением прибора, например гальванометра.
Исходя из вышеизложенных соображений необходимо выбрать тензорезистор. Так как в задании уже задан тип тензорезистора, то исходя из расчета выбираем полупроводниковый тензорезистор Ю-8А:
– Номинальная тензочувствительность +100
– Номинальное сопротивление: R = 220 Ом;
– Рабочий ток: I = 10 мА;
– Габаритные размеры: l = 2 мм, L = 3 мм, b = 0,3 мм;
4.1.3 Определение напряжения питания тензорезистивного преобразователя
Напряжение питания полумоста рассчитывается по формуле:
,где
- номинальный ток тензорезистора; - эквивалентное сопротивление схемы.Рисунок 2 – Включение тензорезисторов (R1 иR4) по схеме полумоста дополненного до моста стабильными резисторами R2 и R3
Эквивалентное сопротивление берётся из соображения, что напряжение питания прикладывается к двум параллельно соединённым ветвям (R1-R4 и R2-R3). При равенстве сопротивлений по каждой из этих ветвей протекает номинальный ток тензорезистора.
Зададим номинальный ток тензорезистора как 0.7…0.8 от максимального, тогда напряжения питания будет равно:
Принимаем напряжение питания тензорезистора от стабилизированного источника питания 5В.
4.1.4 Обоснование геометрических параметров месдозы
Проверим заданную толщину месдозы по допустимым касательным напряжениям.
Для трубчатого вала
Mкр – крутящий момент на валу;
D – внешний диаметр месдозы;
d– внутренний диаметр.
По условию прочности должно выполняться условие:
Для стали 45X допустимое [t]=240 МПа.
Толщина месдозы:
Из данных формул можно вывести минимально-допустимую толщину месдозы.
Подставим в данную формулу числовые значения и рассчитаем минимально-допустимую толщину месдозы:
По условию d=2мм, что удовлетворяет условию с некоторым запасом прочности, что приведет к уменьшению чувствительности датчика, но предотвратит возможность разрушения месдозы вследствие действия других сил, возникающих при наклеивании тензорезисторов и монтаже месдозы.
Оценку коэффициента преобразования при измерении момента силы делают путем расчета. Однако такой способ рекомендуется только в тех случаях, когда полностью исключена возможность градуировки тензометрируемого вала.
Для расчетов используют следующие соотношения:
для сплошного вала
для полого (трубчатого) вала
где М — измеряемый крутящий момент, Нм;
D — наружный диаметр вала, мм;
d — внутренний диаметр вала, мм;
a — угол между осью наклонного тензорезистора и образующей вала;
G — модуль сдвига, ГПа.
Деформация лежит в допустимых пределах ±3 тыс.еод, следовательно разрушения тензорезистора не произойдет.
Рассчитаем сигнал с выхода тензометрического моста:
где Uп – напряжение питания датчика.
DR – изменение сопротивления тензорезистора.
R – сопротивление плеча моста.
Так как датчик питается от стабилизированного источника питания 5В то Uпит=5В. Относительное приращение сопротивления тензорезисторов находим по известному коэффициенту преобразования и тензочуствительности.
Тензочуствительность ST находим по графику. ST=2,1
ВТаким образом, максимальный диапазон изменения напряжения на выходе датчиков очень мал. Полученное напряжение необходимо усилить с помощью специальных усилителей, что не входит в задание данного проектирования, и поэтому считаем, что сигнал нормализован и его можно подавать на микроконтроллер.
4.1.5 Компоновка датчика крутящего момента
Определение величины моментов сил (крутящих моментов) в приводах и трансмиссиях машин с помощью тензорезисторов производят тремя способами: непосредственным измерением деформаций закручивания вала исследуемого механизма; измерением окружной силы, передаваемой специальным силоизмерителем, встроенным в трансмиссию, и, наконец, специальным тензометрическим преобразователем крутящего момента.
Первый способ прост, однако далеко не на каждый вал можно наклеить тензорезисторы; кроме того, некоторые валы выполняют с большим запасом прочности, что уменьшает измеряемые деформации, увеличивая тем самым погрешность измерения.
Второй и третий способы обеспечивают наибольшую точность, но требуют демонтажа и даже временного (частичного) изменения конструкции исследуемого узла или разрыва силовой цепи, что не всегда осуществимо.
Встроенный силоизмеритель или преобразователь крутящего момента может быть подобран нужной чувствительности и точно проградуирован.
Могут быть также наклеены четыре тензорезистора, соединенные по схеме полного моста. Тензорезисторы, воспринимающие деформации одного знака, включают в противоположные плечи мостовой схемы.
Рисунок 4 – Конструкция преобразователя крутящего момента
4.1.6 Разработка электрической принципиальной схемы датчика крутящего момента
Электрическая принципиальная схема представлена в приложении А.
Электрическая принципиальная схема датчика крутящего момента может быть реализована путем соединения тензорезисторов по схеме полумоста, дополненного до полного моста стабильными резисторами, установленными в корпусе датчика. Примем конструкцию датчика с двумя тензорезисторами Rl, R4, расположенными на месдозе и обычных резисторов R2, R3 расположенных вне месдозы и образующих при соединении через щетки и кольца по электрической схеме на рисунке 4 мост.
4.2.1 Анализ существующих датчиков измерения угла поворота
В зависимости от способа представления измеряемого сигнала выделяют аналоговые и цифровые датчики угла поворота. Информация, представленная в цифровом виде, удобна для обработки, поэтому цифровые датчики получили наибольшее распространение. Поскольку в разрабатываемой АСУТП для обработки измерительной информации используется микроконтроллер, то рассматривать будем только цифровые датчики.