Рисунок 4 – Структурная схема иерархического моделирования обуви Глобальная модель состоит из комплекта деталей верха, включая задник и подносок, а также конструкции деталей низа из подошвы, основной стельки и полустельки.
В качестве примера некоторые результаты расчетов напряженно-деформированного состояния обуви и фрагмента рифления представлены на рисунках 5 и 6.
В данном примере получено, что нейтральная ось в месте рифления располагается на глубине примерно 3 мм от внутренней поверхности подошвы. Основной вид напряженного состояния стельки – продольное сжатие, на которое накладываются изгибные напряжения.
Рисунок 5 – Поля интенсивности напряжений в глобальной модели
Рисунок 6 – Поля интенсивности напряжений в подмодели второго уровня
При изучении влияния размеров подошвы и рифления на напряженно-деформированное состояние в зоне концентрации напряжений были смоделированы рифления, схемы которых представлены на рисунке 7. В расчетах варьировались показанные на рисунке геометрические размеры. Максимальная высота подъема пяточной части подошвы во всех расчетных случаях принималась одинаковой и равной 85 мм.
Схема 1 Схема 2 Схема 3
Рисунок 7 – Схемы рифлений
В результате анализа полученных данных установлено, что при прочих равных условиях с увеличением толщины подошвы или при увеличении глубины рифления напряжения в подошве в месте рифления возрастают. При уменьшении радиуса закругления в наивысшей точке рифления напряжения в рифлении при изгибе подошвы также возрастают. Применение рифлений прямоугольной формы также приводит к увеличению напряжений.
Моделирование поведения конструкции низа обуви в пакете конечно-элементного анализа позволило проанализировать напряженно-деформированное состояние конкретной подошвы в условиях изгиба и получить количественные рекомендации по расположению и величине максимальных напряжений в рассматриваемой конструкции.
Моделируемая конструкция низа обуви состоит из формованной подошвы с рифлением, основной стельки, металлического геленка и полустельки. Очевидно, что наиболее сложной деталью для моделирования здесь является подошва. Расчет конструкции деталей низа обуви в соответствии с разрабатываемым методом выполняется методом иерархического моделирования в два этапа: на втором этапе создается модель наиболее нагруженного участка подошвы. Участок и его размеры выбираются исходя из результатов расчета всей конструкции низа обуви. Это участок максимальных растягивающих напряжений. Для ускорения расчетов получены рекомендации по конечно-элементной аппроксимации галтелей.
Анализ напряженно-деформированного состояния подошвы обуви при изгибе проводился в два этапа. На первом этапе рассчитывали всю конструкцию в целом (рисунок 8). При задании граничных условий для конструкции воспроизводились закрепления и нагрузки, действующие на конструкцию в натурных испытаниях. На втором этапе проводили более подробный расчет наиболее нагруженной части подошвы – подмодель с измельченной конечно-элементной сеткой (рисунок 9).
Рисунок 8 – Поля интенсивности напряжений в модели подошвы
Рисунок 9 – Поля интенсивности напряжений в подмодели подошвы
Сравнительный анализ показывает, что полученное в расчетах место расположения максимальных растягивающих напряжений в рифлении точно соответствует участку возникновения трещины в подошве. Это свидетельствует о достоверности выполненных методом конечных элементов расчетов и эффективности предложенного метода.
ОСНОВНЫЕ ВЫВОДЫ
При решении поставленных задач в работе получены следующие основные научные и практические результаты.
1. Разработан метод определения деформационных и прочностных характеристик низа обуви, включающий анализ напряженно-деформированного состояния деталей в процессе изгиба, использование экспериментальных данных по исследованию усталостных свойств материалов, основанный на применении метода конечных элементов и метода иерархического моделирования. Данный метод позволяет усовершенствовать конструкцию подошвы обуви по показателю долговечности.
2. Создана установка с двумя сменными устройствами: устройство для испытаний образцов резиноподобных материалов на многоцикловый изгиб и устройство для испытания деталей и конструкций низа обуви на многоцикловый изгиб. Первое устройство позволяет испытывать различные виды подошвенных и резиноподобных материалов. Второе устройство предназначено для испытания на усталость при изгибе деталей и конструкций низа обуви.
Созданные устройства обладают рядом преимуществ по сравнению с прототипами. Устройство для усталостных испытаний образцов резиноподобных материалов повышает эффективность и качество испытаний, позволяет получить более достоверные результаты. Устройство для испытания деталей и конструкций низа обуви может создавать на наружной поверхности подошвы циклы изменения напряжений с любым коэффициентом асимметрии, включая отнулевой и симметричный циклы.
3. Проведены усталостные испытания образцов термоэластопласта и конструкции низа обуви, включающей подошву из этого материала. Сопоставление данных двух указанных видов испытаний с использованием результатов статистической обработки показало их хорошую согласованность. Полученные данные могут быть использованы при проектировании новых моделей подошв из термоэластопласта.
4. Произведен конечно-элементный анализ напряженно-деформированного состояния образца термоэластопласта при его изгибе. Полученные значения максимальных растягивающих напряжений, возникающих в образце при нагружении, сделали возможным использование результатов таких испытаний не только для сравнительного анализа различных материалов, но и для непосредственного обеспечения требуемой долговечности подошв обуви на стадии ее проектирования.
5. Реализация метода иерархического моделирования при конечно-элементном анализе напряженно-деформированного состояния конструкции обуви, включающей детали верха и низа, подтвердила его эффективность для анализа прочности подошв.
6. Изучено влияние формы и размеров рифлений подошв на их стойкость к изгибающим и растягивающим нагрузкам. В результате анализа полученных данных установлено, что при прочих равных условиях:
· с увеличением толщины подошвы от 8 до 15 мм при постоянной форме рифлений напряжения в рифлении увеличиваются на 41 %;
· при увеличении глубины рифления от 5 до 7,5 мм напряжения в подошве возрастают на 25 %;
· при увеличении радиуса закругления в наивысшей точке рифления напряжения при изгибе подошвы уменьшаются. Для рифления глубиной 6,5 мм при увеличении радиуса закругления от 1,5 до 5 мм напряжения уменьшились на 20 %. Для рифления глубиной 7,5 мм при увеличении радиуса закругления от 1,1 до 5 мм напряжения уменьшились на 24 %;
· при одинаковой нагрузке напряжения в рифлении с прямоугольным сечением на 8 % выше, чем в рифлении с круглым сечением, что связано главным образом с меньшей величиной радиуса скруглений.
7. Выполнен конечно-элементный анализ механического поведения конструкции низа обуви, включающей подошву с рифлениями на ходовой поверхности. Результаты анализа позволили определить напряженно-деформированное состояние подошвы в условиях эксплуатации и оценить ее долговечность. Достоверность полученных расчетных данных подтверждена сопоставлением с данными испытаний.
ОПУБЛИКОВАННЫЕ РАБОТЫ ПО ТЕМЕ ДИССЕРТАЦИИ
1. Глазунова Н.А. Компьютерное моделирование в легкой промышленности // Состояние и перспективы развития сервиса в поволжском регионе / Поволжская региональная науч.-практ. конф. 11-14 сентября 2002 г. – Самара, 2002 г. – С. 49-50.
2. Глазунова Н.А. Компьютерное моделирование подошв обуви // Легкая промышленность. Сервис. Научные исследования аспирантов и молодых ученых вузов Поволжского федерального округа. / Региональная науч.-техн. конф. 23-25 сентября 2003 г. – Самара, 2003. – С. 51-52.
3. Глазунова Н.А. Исследование напряженного состояния подошвы обуви // Легкая промышленность. Сервис. Научные исследования аспирантов и молодых ученых / Всерос. науч.-техн. конф. 10-12 октября 2005 г. Сб. материалов. – Самара, 2005. – С.34-35.