Смекни!
smekni.com

Где эмпирические коэффициенты: [ист.3, с.273]

Сp = 300

x = 1,0

y = 0,75

n = - 0,15

kp = 0,97

= 10ּ300ּ0,1251ּ0,060,75ּ500 - 0,15ּ0,97= 33 (н)

мощность:

N =

(кВт) [ист.3, с.271]

Выбираем токарно-винторезный станок 16Л20П.

Операция 030 токарная:

канавка Ш119:

Резец канавочный, пластины Т15К6

t =0,5 мм

s = 0,5 мм/об

i = 1

V =

[ист.3, с.265]

Где эмпирические коэффициенты: [ист.3, с.269]

= 340

Sу = 0,50,45

tx = 0,50,15

Tm = 600,2 - стойкость инструмента

Kv =1, 19

м/мин=4,5 м/с

об/мин

принимаем nф=640 об/мин, тогда

м/мин=4 м/с

силовые параметры:

, [ист.3, с.271]

Где эмпирические коэффициенты: [ист.3, с.273]

Сp = 300

x = 1,0

y = 0,75

n = - 0,15

kp = 0,97

= 10ּ300ּ0,51ּ0,50,75ּ240 - 0,15ּ0,97= 380 (н)

мощность:

N =

(кВт) [ист.3, с.271]

Выбираем токарно-винторезный станок 16Л20П.

Резец проходной отогнутый (450):

(Ш120): t =2,5 мм

s = 0,14 мм/об

i = 3

V =

[ист.3, с.265]

Где эмпирические коэффициенты: [ист.3, с.269]

= 420

Sу = 0,140,45

tx = 2,50,15

Tm = 600,2 - стойкость инструмента

Kv =1, 19

м/мин=7,75 м/с

об/мин

принимаем nф=1020 об/мин, тогда

м/мин=6,4 м/с

силовые параметры:

, [ист.3, с.271

Где эмпирические коэффициенты: [ист.3, с.273]

Сp = 300

x = 1

y = 0,75

n = - 0,15

kp = 0,97

= 10ּ300ּ2,51ּ0,140,75ּ384 - 0,15ּ0,97= 682(н)

мощность:

N =

(кВт) [ист.3, с.271]

Выбираем токарно-винторезный станок 16Л20П

Операция 035 токарная(тонкое растачивание):

Резец расточной для обработки глухих отверстий, твердосплавные пластины Т15К6

(Ш120): t =0,2 мм

s = 0,06 мм/об

i = 1

V =

[ист.3, с.265]

Где эмпирические коэффициенты: [ист.3, с.269]

= 420

Sу = 0,060,2

tx = 0, 20,15

Tm = 600,2 - стойкость инструмента

Kv =1, 19

м/мин=8,2 м/с

об/мин

принимаем nф=1220 об/мин, тогда

м/мин=7,7 м/с

силовые параметры:

, [ист.3, с.271]

Где эмпирические коэффициенты: [ист.3, с.273]

Сp = 300

x = 1,0

y = 0,75

n = - 0,15

kp = 0,97

= 10ּ300ּ0,21ּ0,060,75ּ460 - 0,15ּ0,97= 42 (н)

мощность:

N =

(кВт) [ист.3, с.271]

Выбираем токарно-винторезный станок 16Л20П.

Операция 040 фрезерная:

Фреза концевая с коническим хвостиком Р6М5

(Ш145): D=40

t = 3ммq = 0,45Т = 120 мин

Sz = 0,2 мм x = 0,5 u=0,1

Z = 5y = 0,5

i = 2p = 0,1

Cv = 46,7m = 0,33

V =

м/мин=0,75 м/с

n =

принимаем n =315 об/мин

Vф =

м/мин=0,67 м/с

сила резания:

Н

Ср = 12,5

x = 0,85

y = 0,75

q = 0,73

w = - 0,13

n = 1

крутящий момент:

(Нּм)

мощность:

Nℓ =

кВт

Выбираем станок вертикально-фрезерный консольный 6Р10.

Операция 045 фрезерная(чистовая):

Фреза концевая с коническим хвостиком Р6М5

(Ш145): D=40

t = 1,5ммq = 0,45Т = 120 мин

Sz = 0,2 мм x = 0,5 u=0,1

Z = 5y = 0,5

i = 2p = 0,1

Cv = 46,7m = 0,33

V =

м/мин=1,07 м/с

n =

принимаем n =480 об/мин

Vф =

м/мин=1 м/с

сила резания:

Н

Ср = 12,5

x = 0,85

y = 0,75

q = 0,73

w = - 0,13

n = 1

крутящий момент:

(Нּм)

мощность:

Nℓ =

кВт

Выбираем станок вертикально-фрезерный консольный 6Р10.

Операция 050 сверлильная:

Сверло спиральное Æ12 P6M8

t=6 q=0,4

s=0,28 y=0,5

Cv=9,8 m=0,2

T=20

Скорость резания:

V=

м/мин =0,55 м/с

Крутящий момент:

Cm=0,0345, q=2, y=0,8

Mкр=

Hm

Сила резания:

Cp=68, q=1, y=0,7

P0=

H

Мощность резания:

n=

об/мин

Ne=

кВт

Выбираем станок вертикально-сверлильный 2Н125.

Расчет контрольно-измерительного инструмента

1. Расчет исполнительных размеров калибров-скоб для Æ91h11(-0,22).

Δв=28 мкм, ув1=0 мкм, Нк1=15 мкм, Нр=4 мкм

1) Определим наибольший предельный размер вала:

Dmax=DH=91 мм.

2) Определим наименьший предельный размер вала:

Dmin=DH-Δд=91-0,22=90,78 мм.

3) Определим наибольший размер непроходного калибра-скобы:

HEc =Dmin-Нк1/2=90,78-0,015/2=90,7725 мм.

4) Определим наименьший размер проходного калибра-скобы:

ПРс=Dmax-Δв1-Нк/2=91-0,028-0,004/2=90,97 мм.

5) Определим предельный размер изношенного калибра-скобы:

ПРи. с. =Dmax+ув=91+0=91 мм.

6) Определим наибольший размер контркалибра К-ПРс:

К-ПРс=Dmax-Δв1+Нр=91-0,028+0,015/2=90,047 мм.

7) Определим наибольший размер контркалибра К-НЕс:

К-НЕс=Dmin+Нр/2=90,78+0,004/2=90,782 мм.

8) Определим наибольший размер контркалибра К-Ис:

К-Ис=Dmax+ув1+Нр=91+0+0,004/2=91,002 мм.

9) Построим схему расположения полей допусков калибров для вала диаметром Æ91h11 (-0,22)

2. Расчет исполнительных размер калибров-пробок для измерения Æ77Н11(+0, 19):

Δ0=25 мкм, Нк=13 мкм, ув=0 мкм.

1) Определим наибольший предельный размер контролируемого отверстия:

Dmax=Dн+Δд=77+0, 19=77,19 мм.

2) Определить наименьший предельный размер контролируемого отверстия:

Dmin=Dн=77=77 мм.

3) Определим наибольший размер проходного нового калибра-пробки:

ПРп=Dmin+Δ0+Нк/2=77+0,025+0,013/2=77,0315 мм.

4) Определим наибольший размер непроходного калибра-пробки:

НЕп=Dmax+Нк=77, 19+0,013/2=77,228 мм.

5) Определим предельный размер изношенного калибра-пробки:

ПРи=Dmin-ув=77-0=77 мм.

6) Строим схему расположения полей допусков калибров для отверстия

Æ77Н11(+0, 19).

Конструкторская часть

Проектирование станочного приспособления

Для выполнения этого пункта курсового проекта я выбрал такой тип приспособления, как трехкулачковый патрон с клиновым центрирующим механизмом (токарная операция), который приводится в действие от вращающегося пневмоцилиндра.

Из приспособлений для токарных станков наиболее широко применяются трехкулачковые патроны. Конструкция трехкулачкового патрона состоит из корпуса, в котором перемещаются три кулачка с рифленой поверхностью которых сопрягаются сменные кулачки. Для крепления накладных кулачков после их перестановки в процессе наладки патрона служат винты и сухари.

Скользящая в отверстии корпуса патрона муфта имеет для связи с кулачками три паза с углом наклона 15° и приводится в движение от штока привода. В рабочем положении муфта удерживается штифтом, который одновременно служит упором, ограничивающим поворот муфты при смене кулачков. Втулка предохраняет патрон от проникновения в него грязи и струж


ки. Одновременно ее конусное отверстие используется для установки направляющих втулок, упоров и т.п.

К достоинствам клинового патрона следует отнести:

1) компактность и жесткость, так как механизм патрона состоит всего из четырех подвижных частей (скользящей муфты и кулачков);

2) износоустойчивость, так как соединение муфты с кулачками происходит по плоскостям с равномерно распределенным давлением, а возможность быстрого съема кулачков способствует хорошей их чистке и смазке.