Смекни!
smekni.com

Теплотехнический контроль котлоагрегата (стр. 3 из 5)

Допускаемое отклонение термо-э. д. с. термометров типа ТХА и ТХК от градуировочных значений составляет до температуры 300 °С соответственно ±0,16 и ±0,2 мВ.

Термоэлектроды из благородных металлов изготовляются обычно из проволоки диаметром 0,5 мм, а из неблагородных — диаметром 1,2—3,2 мм . Диаметр термоэлектродов определяется назначением термометра (технический, лабораторный и др.), диапазоном измеряемых температур, а также необходимой прочностью.

Рабочий конец термометров в большинстве случаев образуется скруткой и сваркой концов термоэлектродов в пламени электрической дуги или гремучего газа. Иногда применяется также спайка концов термоэлектродов серебряным припоем.

Длина термоэлектродов выбирается в зависимости от условий установки термометра, в частности от глубины погружения его в измеряемую среду.

Устройство термоэлектрических термометров

Для изоляции термоэлектродов и защиты их от вредного воздействия окружающей среды, а также для обеспечения прочности термометра и удобства его установки он имеет специальную арматуру, состоящую из электроизоляции, защитного чехла и головки с зажимами для присоединения внешних проводов.

Термоэлектроды термометра от спая до зажимов тщательно изолируются. В качестве изоляции применяются одно- или двухканальные трубки или бусы — из фарфора (до температуры 1300 °С) и окислов алюминия, магния пли бериллия (свыше 1300 °С), надеваемые на термоэлектроды.

Защитный чехол термометра представляет закрытую с одного конца трубку, предохраняющую термоэлектроды от воздействия внешней среды. Он должен обладать устойчивостью против действия высокой температуры и резких ее колебаний, быть механически прочным и газонепроницаемым, а также не выделять при нагревании вредных для термоэлектродов газов и паров.

Термометры из благородных металлов имеют защитные чехлы из алунда, состоящего из смеси окислов алюминия (99% ) и титана (1% ), выдерживающие температуру до 1600 °С. Для термометров из неблагородных металлом используются стальные защитные чехлы. Чехлы на углеродистой стали применяются для работы при температуре до 600 °С, а из нержавеющей и жаропрочной — до 1000 °С.

Для снижения стоимости стальных чехлов их иногда выполняют составными: концевую часть, погружаемую в измеряемую среду,- из легированной стали, а остальную часть - из углеродистой. Стальные защитные чехлы термометров бывают без штуцера и с подвижным или неподвижным штуцером с резьбой, служащим для установки термометра в месте измерения температуры. Термометры без штуцера устанавливаются с помощью особого крепления.

Головка термометра, закрытая съемной крышкой и имеющая обычно водозащищенное исполнение, изготавливается из бакелита или алюминия и жестко соединяется с открытым концом защитного чехла. В головке расположены зажимы для подключения внешних проводов и штуцер с уплотнением для их ввода.

В тех случаях, когда термоэлектроды не подвергаются длительно вредному воздействию внешней среды и не требуют придания им большой прочности, защитные чехлы и закрытые головки не применяются. К этой группе относится большинство термометров, применяемых при специальных и лабораторных измерениях.

Запаздывание показаний термоэлектрических термометров зависит от их тепловой инерции, показателем которой является время, необходимое для того, чтобы при быстром внесении равномерно нагретого до 30—35 °С термометра в водяной термостат с более низкой постоянной температурой (около 15—20 °С) разность температур воды и термометра стала равной 37% температуры, которую термометр будет иметь к моменту наступления теплового равновесия (т. е. практически от температуры воды в термостате). В зависимости от значения показателя тепловой инерции термометры бывают малоинерционные (до 40 с), со средней инерционностью (до 1 мин), с большой инерционностью (до 3,5 мин) и с ненормированной инерционностью (свыше 3,5 мин).

Выпускаются одинарные (с одним чувствительным элементом) и двойные (с двумя чувствительными элементами) термоэлекртические термометры различных типов.

Двойные термометры применяются для измерения температуры в одном и том же место одновременно двумя вторичными приборами, установленными в разных пунктах наблюдения. Они содержат два одинаковых чувствительных элемента, заключенных в общую арматуру. Термоэлектроды их изолированы друг от друга и защитного чехла. В головке термометра находятся четыре зажима для присоединения проводов от вторичных приборов.

Для измерения высокой температуры газов при атмосферном давлении применяются термоэлектрические термометры типов ТПП-0555 и ТПР-0555.

Для измерения температуры жидкости, газа и пара применяются одинарные и двойные виброустойчивые термоэлектрические термометры типов ТХА-0515 и ТХК-0515, выпускаемые в трех исполнениях — без штуцера, с подвижным штуцером и с неподвижным штуцером . Защитный чехол термометров имеет наружный диаметр 10 мм. Для первого термометра он изготовляется из стали 0X13, Х18Н10Т или 0Х20Н14С2 и для второго — из стали 0X13 или 0Х20Н14С2. Термоэлектроды термометров изолированы двухканальными фарфоровыми бусами , а рабочий конец — фарфоровым колпачком. Термометры снабжены водозащищенной головкой . Для термометров с подвижным штуцером допускаемое условное давление среды составляет 0,4 МПа, а с неподвижным штуцером и без него — 6,4Мпа. При установке термометров с неподвижным штуцером в защитной гильзе допускаемое условное давление среды равно 25 или 50 МПа . Монтажная длина термометров изменяется в пределах 120—2000 мм, причем для термометров со штуцером она ограничивается его положением на чихле. Инерционность термометра составляет 10— 40 с, а в защитной гильзе — 40—120 с.

При установке термометра без защитной гильзы допускается скорость измеряемой среды равна для воды 15 и пара 25 м/с. При наличии защитной гильзы на условное давление 25 или 50 МПа допускаемая скорость для термометра типа ТХА-0515 составляет для воды 20 и для пара 40 м/с, а для термометра типа ТХК-0515 — для воды и пара при давлении 25 МПа соответственно 20 и 40 и давлении 50 МПа — 100 и 120 м/с.

Для измерения температуры жидкости и газа применяются также термоэлектрические термометры типов ТХА-VI11 и TXK-VIII с неподвижным штуцером и монтажной длиной 160—1250 мм, рассчитанные на условное давление 4 МПа, и типов ТХА-ХШ и ТХК-ХШ без штуцера

с монтажной длиной 500—3200 мм, предназначенные для работы при атмосферном давлении. Защитный чехол наружным диаметром 21 мм изготовляется для термометров ТХА из стали Х18Н10Т или Х25Т, а для термометров типа ТХК — из стали 20 или Х18Н10Т. Термоэлектроды термометров изолированы фарфоровыми бусами. Рабочий конец термометров помещен в фарфоровый колпачок. Термометры снабжены алюминиевой головкой. Инерционность термометров 3,5 мин.

3.2 Милливольтметр Ш-4500

Магнитоэлектрический милливольтметр является чувствительным вторичным прибором. Для измерения температуры шкала его градуируется непосредственно в °С.

Принцип действия и устройство милливольтметра.

Работа милливольтметра основана на взаимодействии магнитного ноли, образуемого проводником, по которому протекает электрический ток, создаваемый термоэлектрическим термометром, с магнитным полем находящегося в приборе постоянного магнита.

Проводник в виде прямоугольной рамки, состоящей из нескольких витков тонкой изолированной проволоки и могущей поворачиваться на опорах вокруг вертикальной оси 0 — 0, помещается в магнитное поле постоянного магнита параллельно силовым линиям.

При прохождении тока через рамку появляется магнитное поле, перпендикулярное ее плоскости, которое, взаимодействуя с полем основного магнита, образует две одинаковые силы F, действующие согласно правилу левой руки на боковые стороны(активные) стороны рамки в противоположных направлениях. Сила F (Н) находится из выражения

F = nlBI,

где п — число витков рамки; I — активная высота рамки, м; В — магнитная индукция, Т; I — сила тока, А.

В результате на рамку воздействует вращающий момент Мв(Н•м), определяемый по формуле:

Mв=2rF, где r — радиус, рамки, м. (1)


Под влиянием этого момента рамка стремится повернуть вокруг оси до совпадения по направлению е магнитного поля с полем постоянного магнита. Движение рамки вызывает закручивание скрепленной с ней одним концом спиральной пружинки, противодействующей повороту рамки.

При отклонении рамки от плоскости, параллельной направлению магнитных линий постоянного магнита 2,

на угол φ значение Мпбудет ввиду разложения силы F уменьшаться и выражение (1) примет вид:

MB = 2rFcosφ.

Для обеспечения постоянства Мвпри различных значениях φ, что необходимо для получения равномерной шкалы прибора, рамка помещается в концентрированное радиальное магнитное поле образованное при помощи стальных полюсных наконечников 3 и цилиндрического сердечника 4, расположенного внутри рамки. Полюсные наконечники отделены друг от друга вкладышами 5 из немагнитного материала. Подковообразный постоянный магнит 1 из легированной стали снабжен полюсными наконечниками 2 с цилиндрической выточкой, между которыми неподвижно укреплен цилиндрический сердечник 3. В кольцевом воздушном зазоре шириной около 2 мм, образованном полюсными наконечниками и сердечником, изготовленными из мягкой литой стали, расположены боковые стороны подвижной рамки 4, состоящей из 100— 800 витков медной или алюминиевой изолированной проволоки диаметром 0,07—0,0.4 мм.

Рамка, жестко скрепленная с указательной стрелкой 5, образует подвижную часть прибора, которая может поворачиваться вокруг оси сердечника благодаря сидящим в рамке с торцевых сторон двум стальным корням 6, опирающимся на укрепленные в стойке 7 агатовые подпятники 8. Рядом с кернами диаметром около 4мм и углом заточки 600 расположены 2 спиральные пружины 9 из бериллиевой бронзы, внутренние концы которых прикреплены к рамке, а наружные у верхней пружинки- к оси рычага 10 и у нижней- к штифту неподвижной стойки. С этими же пружинами соединены концы обмотки рамки и два зажима 11, служащие для подключения термоэлектрического термометра.