Санкт-Петербургский государственный горный институт им. Г.В. Плеханова
По дисциплине __________________________________________________________
________________________________________________________________________
(наименование учебной дисциплины согласно учебному плану)
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Выполнил: студент гр. ММ-05 ____________________ / Иванов А.А. /
(подпись)(Ф.И.О.)
ОЦЕНКА: _____________
Дата: ___________________
ПРОВЕРИЛ
Руководитель проекта __профессор__ __________________ / Петров Г. В. /
(должность) (подпись) (Ф.И.О.)
Санкт-Петербург
2008
В работе освещены вопросы теории и практики конвертирования медно-никелевых штейнов. Проведен расчет материального и теплового баланса процесса на основании практики конвертирования медно-никелевых штейнов рудотермических печей комбината «Печенганикель».
In work the questions of the theory and practice of converting copper-nikel stein are covered. The account of material and thermal balance of process is carried out on the basis of practice of converting copper-nikel stein ore-thermal of furnaces of combine «Pechenganikel».
Введение…………………………………………………………………………4
1. Теоретическая часть
1.1 Характеристика исходных материалов процесса конвертирования…….5
1.2. Теоретические основы процесса конвертирования медно-никелевых штейнов………………………………………………………………………….7
1.3 Продукты конвертирования……………………………………………….10
2. Материальный баланс процесса
2.1 Технологическая схема конвертирования………………………………..13
2.2 Расчет ведем в соответствии с технологической схемой……………….13
3 Аппаратно-технологическая схема конверторного передела…………….22
Список использованной литературы………………………………………....23
Введение
АО «Горно-металлургический комбинат Печенганикель» представляет собой сложный производственный комплекс по добыче и переработке сульфидной медно-никелевой руды.
Технологическая схема переработки медно-никелевых руд начинается с процессов обогащения и состоит из четырех циклов:
1) механическое обогащение руд;
2) металлургический передел (плавка концентратов и конвертирования штейна);
3) разделения меди и никеля методом флотации;
4) извлечение полученных из медных и никелевых концентратов меди, никеля и сопутствующих металлов.
Рис.1. Технологическая схема АО “ГМК Печенганикель”
Основной технологической задачей процесса конвертирования штейнов является продувка жидкого штейна воздушным дутьем и получения файнштейна заданного качества. При продувке железо и другие компоненты окисляются и переходят из штейна в шлак, сера, окисляясь, переходят в газовую фазу.
Конвертерные газы после очистки от пыли, поступают в оборот, выбрасывают в атмосферу или передают в сернокислотный завод для получения серной кислоты.
Файнштейн далее поступает на операцию разделения никеля и меди.
Файнштейн является конечной продукцией комбината. Его дальнейшая переработка осуществляется на комбинате «Североникель».
В таблицах 1 и 2 приведены опытные данные конвертирования.
Таблица 1. Опытные данные конвертирования, %
Таблица 2. Опытные данные конвертирования с загрузкой массы из конвертора 1, %
Штейн - промежуточный продукт, представляющий сплав сульфидов железа и цветных металлов переменного химического состава, в нём аккумулируются имеющиеся в сырье благородные и сопутствующие металлы.
Таблица 3. Состав штейнов, поступающих на конвертирование, %
Штейн имеет низкое содержание серы, в связи с этим серы штейна не хватает для связывания всех металлов в сульфид и часть металлов находится в нем в свободном состоянии, такие штейны называют металлизированными.
Штейны обеднительного передела имеют большую степень металлизации. Это существенно влияет на режим процесса конвертирования.
Так же используется штейн из рудотермических печей, получаемый при плавке в РТП руды, обожженных окатышей, оборотного шлака и флюса, а так же штейн из электропечей обеднения конверторного шлака, получаемый при переработке в ЭПО конверторного шлака.
Флюсы - материалы, применяемые в металлургических процессах с целью образования или регулирования состава шлака, предохранения расплавленных металлов от взаимодействия с внешней газовой средой, а также служащие для связывания окислов при пайке и сварке металлов.
Кварцевый флюс (70-75% SiO2) при конвертировании штейнов отвечает всем необходимым требованиям. Необходимо отметить, что кварцевый флюс в конверторном процессе применяют еще и в качестве регулятора температуры. Так же в качестве флюса применяется речной песок (65-68% SiO2).
По техническим условиям содержание кремнезема SiO2 не должно быть ниже 67 %. Обычно предпочитают флюсы с максимальным содержанием кремнезема, поскольку в этом случае расход флюса минимален, а процесс шлакообразования протекает наиболее успешно. Влажность кварцевого флюса не должно превышать 2 %.
1.2. Теоретические основы процесса конвертирования медно-никелевых штейнов
Руда с низким содержанием металлов подвергается переработке на обогатительной фабрике в городе Заполярном. Полученный медно-никелевый сульфидный концентрат поступает в цех обжига, также расположенный в Заполярном. Обожженные окатыши поступают на рудную электроплавку в плавильный цех в поселке Никель. В сернокислотном цехе перерабатывают газы конверторного передела, содержащие в среднем 3% диоксида серы.
Богатые сульфидные медно-никелевые руды перерабатываются по схеме прямой селективной флотации с последовательным получением медного, никелевого, пирротинового концентратов и отвальных хвостов. Далее производится плавка.
Конвертирование штейнов — один из основных металлургических процессов в производстве меди и никеля. Конвертерный передел является частью плавильного цеха. В нем размещаются конвертеры - агрегаты, в которых перерабатывается медно-никелевый штейн, поступающий из рудно-термических и обеднительных электропечей. Целью конвертерного процесса является удаление из штейна практически всего железа и получение продукта, который называется файнштейном. В файнштейн с возможной полнотой должны быть извлечены никель, медь, кобальт, благородные (платина, рутений, родий, иридий, осмий) металлы.
В конверторах расплавленный штейн продувают воздухом в присутствии вводимого в конвертер кварцевого флюса. Образующее при продувке закисное железо FeO взаимодействует с кварцем флюса, образуя силикат типа фаялита [(FeO)2ґSiO2].
В операции конвертирования получают три конечных продукта: файнштейн; конверторный шлак и запыленные отходящие газы, содержащие сернистый ангидрид (SO2).
Конверторный шлак направляют на операцию обеднения для обеспечения более высокого извлечения ценных металлов в файнштейн.
Конверторные газы после очистки от пыли, поступающей в оборот, выбрасывают в атмосферу или передают на сернокислотный завод для получения серной кислоты.
Файнштейн далее поступает на операцию разделения никеля и меди.
Сульфиды железа, кобальта, никеля и меди, из которых в основном состоит штейн, каждый в отдельности, при температуре конвертирования (1200С-1300oС) обладает высоким сродством к кислороду. Это означает, что каждый сульфид способен активно окисляться кислородом по следующим реакциям:
FeS+0,5ґO2 =FeO+SO2 ;
CoS+0,5ґO2=CoO+SO2 ;
Cu2S+0,5ґO2=2ґCu+SO2 ;
2ґCu+0,5ґO2=Cu2O ;
Ni3S2+1,5ґO2=3ґNiO+2ґSO2.
Высокое сродство к кислороду при температурах конверторного процесса имеют также свободные металлы - железо, кобальт, никель и медь - и поэтому, они каждый в отдельности, весьма, активно взаимодействуют с кислородом.
При совместном присутствии в расплаве металлы и сульфиды окисляются не одновременно, а в определенной последовательности в соответствии с величинами их сродства к кислороду или сере.
При продувке воздухом медно-никелевого штейна, не содержащего свободных металлов, в начале кислородом воздуха будет окисляться наиболее активная составляющая расплава FeS по реакции FeS+0.5ґO2 =FeO+SO2 .
Находящийся в расплаве FeS защищает сульфиды Со, Ni и Cu от окисления, так как обменные реакции MeO+FeS=MeS+FeO, где Me означает Со, Ni, Cu, протекают слева направо. Основная реакция конвертирования неметаллизированных штейнов:
2ґFeS+3ґO2+SiO2= (FeO)2ґSiO2+2ґSiO2 .
При конвертировании большее значение имеет процесс образования магнетита (Fe3O4). Магнетит образуется при конвертировании любых штейнов вследствие окислительного характера процесса.
При продувке металлизированных штейнов в начале протекает следующая реакция:
2ґFe+0.5ґO2+SiO2= (FeO)2ґSiO2