Смекни!
smekni.com

Исследование конструкции ЭГВП (стр. 2 из 2)

Вопрос №3: Нарисовать конструктивную схему и дать описание автоматической системы компенсации веса подвижных частей и коротко раскрыть назначение и принцип действия этой системы управления.

Блок поджатия образует вместе со штоком-поршнем, выполняющего в данном случае роль однощелевого золотника, представляют собой автоматическую следящую систему компенсации веса испытуемого изделия (автоматическую систему компенсации статической нагрузки). Наличие газо-гидравлического аккумулятора определяется тем, что при его отсутствии в так называемой полости поджатия при вибрационном движении из-за малой сжимаемости рабочей жидкости возникает большое давление, препятствующее движению штока поршня вниз.

Для компенсации веса испытуемого на вибропрочность изделия в нижней части гидродвигателя конструктивно создается полость с частично расположенным в ней штоком поршня и, к которой присоединены газо-гидравлический аккумулятор, манометр и редукционный клапан. Рабочая жидкость от источника питания заполнят указанную полость через редукционный клапан таким образом, чтобы произведение устанавливаемого редукционным клапаном давления на площадь поршня равнялось весу испытуемого изделия. Наличие газо-гидравлического аккумулятора определяется тем, что при его отсутствии в так называемой полости поджатия при вибрационном движении из-за малой сжимаемости рабочей жидкости возникает большое давление, препятствующее движению штока поршня вниз. Основным недостатком предлагаемой конструкции является то, что:

1) при изменении веса изделия необходимо перенастройка давления в полости поджатия;

2) в случае разомкнутого управления электрогидравлическим вибратором (отсутствие главной обратной связи) шток поршня будет “проваливаться”, так как установить и поддерживать, с необходимой точностью, величину давления в полости поджатия невозможно.

Конструкция полости поджатия, которая образует вместе со штоком поршня автоматическую следящую систему компенсации веса испытуемого изделия (см. рис.2).

Рисунок 2. Конструктивная схема компенсации веса подвижных частей.

Вопрос №4: Нарисовать гидравлическую схему гидростатических опор штока поршня, указав причину включения в нее дросселей.

Гидростатические подшипники являются главными конструктивными особенностями рассматриваемого вибрационного ГЦ. Подшипники в данном случае выполняют роль торцовых уплотнений штока-поршня, а также центрируют шток относительно неподвижного корпуса ГЦ. В каждом гидростатическом подшипнике имеется по четыре рабочих камеры - кармана. Верхний подшипник оборудован манжетным уплотнением и грязесъёмником

Подвод рабочей жидкости под давлением к гидростатическим подшипникам производится по внутреннему каналу и круговой проточке, выполненной в корпусе подшипников, а слив жидкости - по дренажному каналу.

При работе гидростатического подшипника жидкость из линии нагнетания подается в карманы через дроссели лабиринтного типа. В зависимости от количества дроссельных шайб и сопротивления истечения жидкости из карманов, зависящего от величины радиального зазора, в карманах подшипников создается давление

. При воздействии на шток боковой силы (см. рис.3) с противоположной ей стороны уменьшается зазор и повышается сопротивление истечению и, следовательно, давление в соответствующем кармане подшипника. На противоположной стороне зазор увеличивается, сопротивление истечения уменьшается и давление в камере падает. Т.о, создается гидравлическая восстанавливающая сила, центрирующая шток. Пока несущая способность подшипника не будет превышена, шток-поршень будет плавать в масле и работать в режиме жидкостного трения.

Рисунок 3. Схема действия гидростатических подшипников.

Так как при работе гидростатических подшипников жидкость подается через дроссели лабиринтного типа, то их коэффициент сопротивления определяет давление, подаваемое в карманы.

Вопрос №5- 6:Система управления, с помощью которой можно регулировать частоту колебаний исполнительного органа; изменять амплитуду колебаний.

Рассмотрим конструкцию ЭГВП с единичной гидромеханической обратной связью, реализуемой путем размещения золотника и золотниковой втулки в теле штока поршня. Такая конструкция ЭГВП может быть изготовлена на большинстве машиностроительных предприятий в условиях инструментального производства и имеет простейшую систему управления включающую в себя низкочастотный генератор и усилитель мощности.

Конструкция следящего электрогидравлического вибратора с золотниковым распределителем в теле поршня

На рис.4. показана конструкция ЭГВ, прототипом которой является вибростенд ВС-3 конструкции МВТУ им. Н.Э. Баумана.

а.) ЭГВ предназначен для проведения испытаний на вибропрочность и виброустойчивость изделий различного назначения. Испытуемое изделие закрепляется на вибростоле 9, которое крепится к штоку ГЦ 7 с помощью конической посадки и болта 8, контрящегося с помощью пружинной шайбы гровера. Вибростол выполнен решетчатым из сплава алюминия с целью уменьшения звукового излучения и его веса. Жесткость стола обеспечивается ребрами жесткости.

Одним из основных узлов ЭГВ является гидродвигатель, состоящий из ГЦ (стальной корпус 14 с запрессованной в него закаленной втулкой 13) и штока 7 с поршнем, выполненными как единое целое. Особенностью гидродвигателя является встроенность золотника 3 с золотниковой втулкой 4 в тело поршня (см. рис.12.), что значительно упрощает реализацию обратной связи, которая здесь является единичной по положению поршня.

Золотниковая втулка является наборной из стальных закаленных колец (легированные стали 40Х, 12ХН3А), запрессованных в тело поршня. Это позволяет технологически проще выполнить допуски на осевые размеры золотниковой втулки и обеспечить работу золотникового распределителя практически в режиме отсечного действия.

Золотник 3 сделан с подвнутрением буртиков под 45 градусов для уменьшения гидродинамических сил. Пружина 10 служит для компенсации силы веса подвижных частей с учетом веса испытуемого изделия.

Во избежания проворачивания стола 9 относительно корпуса к нему с помощью болтового соединения 12 прикреплена шлицевая втулка 11, шлицы которой входят в шлицы на штоке поршня. Шлицевое соединение смазывается за счет утечек из верхней полости ГЦ, герметичность которой обеспечивается втулкой 5.

Бронзовые втулки 6 и 16 являются подшипниковыми опорами для штока поршня. Герметичность корпусных деталей осуществляется с применением резиновых колец. Утечки рабочей жидкости из верхней полости ГЦ через отверстие в шлицевой втулки отводятся в сливной канал со штуцером 2, к которому может быть присоединен шланг сливной магистрали. Утечки из нижней полости ГЦ поступают в полость между корпусной деталью 18 и резиновой мембраной 17, откуда затем через штуцер 2 отводятся в сливную магистраль.

б.) Вторым основным узлом является электромеханический преобразователь электродинамического типа (ЭДП), с помощью которого входной электрический сигнал (поступает обычно со звукового низкочастотного генератора и усиливается по мощности электронным усилителем) преобразуется в механическое перемещение золотника. ЭДП является естественным продолжением корпуса гидродвигателя и крепится к нему с помощью законтренных пружинными шайбами болтов 19. Обмотки 21 создают магнитное поле подмагничивания и запитываются от источника постоянного тока (выпрямителя, аккумуляторной батареи). Обмотка подмагничивания 21 ЭДП выполнена многосекционной (трехсекционой), что позволяет при электрическом пробое ее менять только часть обмотки подмагничивания (обмотка подмагничивания содержит иногда свыше десятка кг и более медного провода и является дорогой).

Магнитное поле обмотки подмагничивания замыкается через воздушный зазор в котором находится рамка ЭДП 20 (подвижная катушка, наматываемая на каркас из сплава алюминия или изолятора). Рамка жестко соединена с золотником с помощью гайки 23 и подвешена на плоской пружине 22.

При подаче электрического сигнала через гибкие проводники 1 на рамку, магнитное поле рамки взаимодействует с магнитным полем обмотки подмагничивания и создает электромагнитную силу, вызывающую перемещение золотника (для примера - вверх). Рабочая жидкость от МНС поступает в центральное отверстие со штуцером в корпусе гидродвигателя а затем через открытое окно ЗР и каналы в теле поршня в нижнюю полость ГЦ. Одновременно, рабочая жидкость из верхней полости ГЦ через каналы в теле поршня и открытое окно ЗР поступает в сливную магистраль. Под действием перепада давлений поршень начнет перемещаться вверх, отслеживая движение золотника вверх. При изменении перемещения золотника на противоположное произойдет смена открытия окон и движение поршня будет происходить вниз.

Рис. 4 Область особенности конструкции золотника.

Рисунок 5. Конструкция ЭГВ