Погрешность аппроксимации представляет собой ничто иное, как погрешность квантования, которую определяют из следующего выражения:
.Тогда можно найти частоту дискретизации:
, .При нахождении частоты дискретизации по Бернштейну обычно получается завышение требуемого значения
до 10 – 14 раз. В нашем случае частота дискретизации по теореме Бернштейна в 13,6 раза превышает частоту дискретизации по теореме Котельникова, что указывает на верность расчета.3. Проектирование структурной схемы АЦП
1 – Входной буферный каскад
2 – Фильтр низких частот
3 – ПСЗ
4 – Устройство выборки хранения
5 – Устройство определения знака
6 – Сравнивающее устройство
7 – ЦАП
8 – РПП
9 – Блок выходных регистров
10 – Делитель частоты
11 – Внутренний генератор тактовой частоты
12 – разъем источника питания.
4. Проектирование принципиальной схемы АЦП
4.1. Проектирование входного каскада.
Согласно ТЗ входное сопротивление разрабатываемого АЦП должно быть более 2 МОм. Для обеспечения этого требования в качестве входного каскада используется операционный усилитель, включенный по не инвертирующей схеме включения. На рисунке 4.1.1. изображен фрагмент принципиальной схемы, на котором изображены входное разъемное соединение, через которое в схему подается входное напряжение (Input) относительно нулевого провода.
Рисунок 4.1.1. Принципиальная схема входного каскада разрабатываемого АЦП.
Коэффициент усиления входного каскада равен единице. В данной схеме используется операционный усилитель OP-37E.
Техническое задание содержит требование по обеспечению входного сопротивления разрабатываемого устройства не менее 1МОм. Это сопротивление можно определить как
, где - сопротивление операционного усилителя по синфазному сигналу.Выберем в качестве сопротивления R3 резистор
C2-33H - 0.125 - 2.05 МОм ±5%
МОм.Согласно расчетам, входное сопротивление равно 2,05 МОм, требование технического задания относительно входного сопротивления выполняется.
Резистор R10 необходим для балансировки операционного усилителя, т.е. для устранения аддитивной составляющей погрешности. В его качестве выберем резистор:
Резистор R5 необходим для повышения устойчивости каскада. Т.к. инвертирующей вход операционного усилителя не имеет связи с землей, то обратная связь получается стопроцентной, что и обеспечивает единичный коэффициент преобразования каскада. В качестве резистора R5 выберем:
С2-33Н - 0,125 – 10 КОм ±5%
4.2. Проектирование фильтра нижних частот.
При проектировании аналого-цифрового преобразователя следует учесть тот факт, что, в соответствии с теоремой Котельникова, спектр полезного сигнала должен располагаться в диапазоне от 0 до
, несоблюдение этого условия вызовет эффект наложения спектров. Это значит, что если какая-либо из гармонических составляющих сигнала будет превышать , то её уровень будет накладываться на составляющую спектра с частотой , где - частота рассматриваемой гармонической составляющей спектра сигнала.Для устранения описанного выше эффекта наложения в схему включен фильтр нижних частот. Любой фильтр не может полностью отрезать частоты, он может их лишь с определенной степенью подавить. Это значит, что частоты, превышающие
будут присутствовать в спектре, но их амплитуда будет подавленной, по сравнению с полосой пропускания фильтра.В соответствии с техническим заданием, погрешность разрабатываемого устройства не должна превышать 0,05%. Таким образом, примем за основу тот факт, что эффект наложения спектров не должен вносить погрешность, превышающую 0,05%. Выбор крутизны фильтра можно пояснить рисунком 4.2.1.
Рисунок 4.2.1 Наложение спектров при использовании ФНЧ.
Крутизну фильтра можно определить из следующей формулы:
, гдеW(f) – уровень сигнала на определенной частоте,
fd – частота дискретизации
fс – частота среза фильтра
Следовательно, будет достаточно использование в схеме фильтра пятого порядка, имеющего крутизну -100 Дб/дек.
В качестве ФНЧ используются два каскада фильтров второго порядка и один каскад первого порядка. В схеме используется фильтр Батерворта поскольку он имеет максимально плоскую АЧХ в полосе пропускания. Фильтр спроектирован по схеме Салена Ки.
Один каскад фильтра представлен на рисунке 4.2.2.
Рисунок 4.2.2 Каскад фильтра низких частот второго порядка.
Расчет фильтра выполнен по методике, описанной в [2].
Каскад фильтра первого порядка приведен на рисунке 4.2.3.
Рисунок 4.2.3 Каскад фильтра низких частот первого порядка.
Для того, чтобы выходное напряжение ФНЧ не было инвертированным по отношению к входному сигналу АЦП, фильтр 1-го порядка построен по не инвертирующей схеме включения операционного усилителя.
Передаточная функция фильтра 1-го порядка имеет вид:
, гдеT – постоянная времени фильтра 1-го порядка
p – оператор Лапласа.
Пусть С14=1нФ, тогда
КОмПоскольку не инвертирующая схема операционного усилителя в данном включении не может обеспечить единичный коэффициент преобразования, назначим фильтру коэффициент, равный двум. Это приведет к тому, что диапазон выходных напряжений фильтра будет в 2 раза больше диапазона входных напряжений, и составит ±5,12В. Из этого следует, что
R28=R7=1.15 КОм
Функция преобразования ФНЧ выглядит следующим образом:
Из этого выражения можно вычислить, что на частоте fd-fc уровень сигнала составит 0,0095%
Типы и номиналы пассивных элементов ФНЧ приведены в таблице 4.2.1.
Таблица 4.2.1.
Типы и номиналы пассивных элементов ФНЧ.
Обозначение | Тип |
R9, R12 | C2-13 – 0.125 – 909Ом ±0,1% |
R11, R13 | C2-13 – 0.125 – 5,49КОм ±0,1% |
C8, C9 | К10-43 – 50В – 750пФ ±1% |
C10, C11 | К10-43 – 50В – 360пФ ±1% |
R27, R28 | C2-13 – 0.125 – 1.15KОм ±0,1% |
С14 | К10-43 – 50В – 1000пФ ±1% |
4.3. Проектирование ПСЗ.
Преобразователь среднего значение имеет своей целью обеспечить на выходе напряжение, постоянная составляющая которого пропорциональна среднему значению выпрямленного входного сигнала.
В данной схеме используется активный двухполупериодный выпрямитель на двух операционных усилителях.
Принципиальная схема ПСЗ приведена на рисунке 4.3.1.
Рисунок 4.3.1 Принципиальная схема ПСЗ.
Произведем расчет номиналов резисторов предложенного ПСЗ.
В качестве диодов VD1 и VD2 используются высокочастотные импульсные диоды КД522А.
Пусть UВХ>0, тогда входной сигнал приходит на инвертирующий операционный усилитель DA7. Диод VD1 – закрыт, а VD2 – открыт. Цепь обратной связи замыкается через сопротивление R21. Проинвертированное напряжение проходит на операционный усилитель DA8.
Запишем сумму токов на инвертирующем входе усилителя DA8:
Пусть UВХ<0, тогда открывается диод VD1, замыкая цепь обратной связи. Она задает нулевой коэффициент усиления усилителя DA7.
Выходное напряжение ПСЗ можно определить как :
Для сохранения постоянства коэффициента преобразования для положительной и отрицательной полуволн сигнала необходимо выполнить условие:
=1