где m – грузоподъемность погрузчика, паллет; Т
Следовательно, производительность погрузчиков равна:
Количество необходимых погрузчиков находится по формуле:
где q – суточный выпуск продукции; Q – производительность погрузчиков; 10 – часы работы погрузчика в 2 смены; 1,3 – коэффициент неравномерности перевозок; n
Значит, 1 погрузчик на склад готовой продукции должен успевать обслуживать линию розлива и вполне нас устраивает. Полученное количество погрузчиков для склада готовой продукции принимается и для посудного склада.
Расчет потребности в таре, вспомогательных и подсобных материалах
Бутылки и ящики (короба)
Примем условно, что напиток разливается в бутылки емкостью 1,0 л. В таком случае для выработки 5000000 л напитка бутылок потребуется
Деформацию бутылок при хранении, розливе и внутризаводских транспортировках примем в следующих размерах, %: на тарном складе – 0,8; в производстве – 2,5; в складе готовой продукции – 0,1. Всего он составит 3,4%.
С учетом деформации бутылок потребуется
Для покрытия деформации потребуется бутылок
Расход коробов в год составит 500000 шт, т.к. в каждый короб вкладывается 1 л бутылок на 1 дал продукции.
Расход пробок и самоклеящихся этикеток принимается равным 10,45 шт/дал, следовательно, на годовой план производства их необходимо
В качестве ополаскивающего раствора для бутылок перед розливом используется вода, циркулирующая в контуре ополаскивателя бутылок в течение рабочей смены. Объем требуемой воды для непрерывной работы в течение дня – 1 м
Нагрузка при хранении материалов принимается равной 1200 кг/м
Расчет складских помещений
Склад новых бутылок рассчитывается на 4-суточный запас с учетом площади, необходимой для установки оборудования и проезда погрузчиков.
Площадь посудного отделения требуется:
Sб =
где q – суточный выпуск продукции в период напряженной работы завода, ящ; К
Площадь склада готовой продукции рассчитывается также на 4-суточный запас продукции с учетом площади, необходимой для проезда погрузчиков. Следовательно, она должна быть равна не менее 401,7 м
2.5 Механический расчет основного аппарата
Синхронно-смесительная установка типа РЗ-ВНС-2.
Установка для приготовления газированных безалкогольных напитков синхронно-смесительным способом РЗ-ВНС-2 (приложение 4).
Колонка 2 деаэрации представляет собой цилиндрический сосуд, в днище которого вмонтирован трубопровод, проходящий внутри колонки. Внутри колонки установлены конусные тарелки. Здесь происходит частичное отделение воздуха от воды.
Вакуум в колонке поддерживают с помощью центробежно-вихревого насоса, который забирает воду из отдельного бака и подает в эжектор, отбирающий воздух, выделяющийся из воды.
Колонка 3 насыщения представляет собой цилиндрический сосуд, в днище которого вмонтирован сливной кран. В нижней части колонки имеется штуцер для подачи насыщенной диоксидом углерода воды из струйной насадки. В средней части расположено три датчика для поддержания уровня воды. Выше датчиков находится редукционный клапан с вентилем для подвода диоксида углерода. Регулировка насыщения воды диоксидом углерода в струйных насадках осуществляется с помощью игольчатого вентиля. Колонка насыщения соединена с накопительной колонкой 4. На этом же трубопроводе установлен предохранительный клапан и контрольный стакан для сброса газовоздушной смеси.
Плунжерный насос-дозатор подает в смеситель 8 воду, насыщенную диоксидом углерода, и сироп в заданном соотношении. Насос-дозатор состоит из гидравлической части редуктора и электродвигателя. Доза сиропа от насоса-дозатора поступает в смеситель 8 через штуцер, вмонтированный в днище. В средней части расположен штуцер для подачи дозы воды, а через штуцер, расположенный в верхней части, смешанный напиток подается в накопительную колонку.
Струйная насадка 10 состоит из корпуса, в который вмонтированы два сопла и два расширителя. Здесь происходит насыщение воды диоксидом углерода. Количество насадок в установке зависит от производительности линии розлива.
Бачок для сиропа снабжен поплавковым регулятором.
Отфильтрованная вода подается в деаэрационную колонку через электромагнитный вентиль и изливается на конусные тарелки. Благодаря вакууму в деаэраторе, создаваемому с помощью вакуум-насоса и водоструйного эжектора, из воды выделяется часть растворенного в ней воздуха. Верхние два датчика указывают рабочий уровень, нижний -остаток воды в деаэраторе.
Деаэрированная вода собирается в нижней части деаэратора, откуда насосом 9 подается в колонку насыщения через струйную насадку 10, где происходит частичное насыщение ее диоксидом углерода.
Отбор насыщенной воды происходит через штуцер, расположенный внизу колонки насыщения, насосом-дозатором, который подает насыщенную воду и сироп в заданном количестве в смеситель. Из смесителя готовый напиток подается в накопительную колонку, откуда поступает в разливочный автомат.
Внутренний диаметр колонки насыщения:
где Q – производительность колонки насыщения, м3/ч; Vв – скорость движения воды в колонке, м/с.
Вместительность колонки без учета поверхности днища и крышки:
где hk – высота колонки насыщения, м.
Толщина стенки обечайки колонки насыщения:
где p – рабочее давление в колонке, МПа; [σ] – допускаемое напряжение материала обечайки и днища, МПа; φ – коэффициент прочности сварного шва; C0 – прибавка на коррозию; C0 = 0,001 м; C1 – прибавка к толщине по конструктивным соображениям; C1=0,0014 м.
Допускаемое давление в обечайке:
Рдоп =
Наибольший допустимый диаметр неукрепленного отверстия в обечайке:
dодоп =
dодоп =
где δ′ст – номинальная толщина стенки, м.
Толщина стенки днища колонки насыщения:
где hдн – высота днища, м.
Наибольший допустимый диаметр неукрепленного отверстия в днище колонки:
Dдн.доп =
Dдн.доп =
Средний диаметр прокладки:
где dвн.п – внутренний диаметр прокладки уплотнения, м; dнар.п – наружный диаметр прокладки уплотнения, м.
Гидравлическое испытательное давление: