погрешность, вызываемая колебаниями элементов технологической сис-
темы; погрешность, определяемая конструктивными особенностями системы
управления технологическим процессом.
В технологии машиностроения под технологической наследственностью понимается перенесение на готовое изделие в процессе его изготовления погрешностей, механических и физико-химических свойств исходной заготовки или свойств и погрешностей, сформировавшихся у заготовки на отдельных операциях изготовления изделия.
Проявление технологической наследственности может привести как к улучшению, так и к ухудшению эксплуатационных свойств деталей.
Технологический процесс изготовления деталей должен разрабатываться с учетом технологической наследственности так, чтобы сохранить у детали положительные качества (наклеп поверхностного слоя, высокую поверхностную твердость, остаточные напряжения сжатия и др.) или, наоборот, устранить отрицательные качества – дефектный слой, отклонения формы и расположения поверхностей и др.
Для целесообразного использования явления технологической наследственности необходимо установить непосредственные связи между эксплуатационными характеристиками деталей и режимами обработки заготовок.
Технологическая наследственность проявляется на всех этапах реализации технологических процессов.
В технологии машиностроения принято различать следующие виды элементарных погрешностей обработки по воздействию на технологическую систему:
систематические постоянные погрешности, вызываемые, например, неточно-
стью мерного инструмента;
систематические погрешности, закономерно изменяющиеся по течению тех-
нологического процесса, вызываемые, например, размерным износом режущего инструмента; случайные погрешности, которые, появившись при обработке одной заготов-
ки, необязательно появляются при обработке других заготовок, а их значения для различных заготовок изменяются в определенных пределах от ∆min до ∆max. Предсказать момент появления и величину этих погрешностей возможно только с определенной вероятностью.
Систематические погрешности обработки изучаются с помощью теоретических или экспериментальных исследований закономерностей, которым они подчиняются.
Случайные погрешности изучаются с применением теории вероятностей и математической статистики.
Для исследований точности механической обработки используются следующие основные методы: расчетно-аналитический; вероятностностатистический и расчетно-статистический.
Раснетно-аналитическая модель предполагает полную детерминированность процесса, для которого точно известны как начальная точность, так и влияние сопутствующих факторов. Путем решения систем уравнений, описывающих закономерности переноса погрешностей технологического процесса, однозначно определяется искомая точность. Факт детерминированности означает, что при одном и том же комплексе исходных условий при каждом последующем расчете получается один и тот же результат. Однако реальные процессы не всегда правильно отображаются детерминированными моделями, и правомерность их применения в таких случаях зависит от детальности изучения исследуемого процесса. Математическое описание процессов в этом случае заключается в последовательном определении начальных (исходных) погрешностей заготовки; далее устанавливается в аналитическом виде их влияние на окончательную точность готовой детали, и наконец, решается полученная система уравнений.
Вероятностно-статистическая модель применяется при изготовлении достаточно больших партий деталей. Она позволяет без раскрытия физической сути явлений решать ряд задач по оценке и исследованию точности обработки, сборки, контроля и анализу точности оборудования. При этом определяются как первичные, так и суммарные погрешности.
Расчетно-статистические модели сочетают положительные стороны обоих, вышерассмотренных методов. Они пригодны для различных условий производства и являются весьма гибкими, так как позволяют рассчитывать первичные и суммарные погрешности, оценивая их отдельные составляющие статистически или расчетным путем. При недостатке данных модель носит в большей мере вероятностно-статистический характер. В то же время, применяя детерминированный подход, можно определить поле рассеивания случайных погрешностей и отдельные погрешности расчетно-аналитическим методом.
Основные понятия по базированию, основанные на межгосударственном стандарте ГОСТ 21495—76* «Базирование и базы в машиностроении», приведены ниже.
Базирование — придание заготовке или изделию требуемого положения относительно выбранной системы координат.
База — поверхность или выполняющее ту же функцию сочетание поверхностей, ось, точка, принадлежащая заготовке или изделию и используемая для базирования (рис. 3.1...3.4). На этих рисунках цифрами 1,2, 3 и 4обозначены соответственно базы, заготовки и элементы станочных приспособлений.
Действительная база — база, фактически используемая в конструкции, изготовлении, эксплуатации или ремонте изделия.
Комплект баз — совокупность трех баз, образующих систему координат заготовки или изделия (рис. 3.5).
Конструкторская база — база, используемая для определения положения детали или сборочной единицы в изделии.
Основная база — конструкторская база, принадлежащая данной детали или сборочной единице и используемая для определения ее положения в изделии
(рис. 3.6, а).
Рисунок 3.1 – База – поверхность Рисунок 3.2 – База – сочетание поверхностей
Рисунок 3.3 – База – ось Рисунок 3.4 – База – точка
а – основные базы шестерни (I,II,III); б – вспомогательные базы вала (I,II,III) с присоединяемой деталью (I); в – измерительная база (А); г – двойная направляющая база (I) детали; д – двойная опорная база (I) детали; е – установочная явная база (I) заготовки (7), направляющая скрытая база (II), опорная скрытая база (III), 1…6 – опорные точки, 8 – губки самоцентрирующих тисков; Рисунок 3.6 – Виды баз
Вспомогательная база — конструкторская база, принадлежащая данной детали или сборочной единице и используемая для определения положения присоединяемого к ним изделия (рис. 3.6,б).
Технологическая база — база (/, //, III), используемая для определения положения заготовки или изделия в процессе изготовления или ремонта.
Измерительная база – база, служащая для определения относительного положения заготовки или изделия и средств измерения (см. рис. 3.6, в).
Установочная база – база, лишающая заготовку или изделие трех степеней свободы: перемещения вдоль одной координатной оси и поворотов вокруг двух других осей (см. рис. 3.6, е).
Направляющая база – база, лишающая заготовку или изделие двух степеней свободы: перемещения вдоль одной координатной оси и поворота вокруг другой оси (см. рис. 3.6, е).
Опорная база – база, лишающая заготовку или изделие одной степени свободы: перемещения вдоль одной координатной оси или поворота вокруг оси (см. рис. 3.6, е).
Двойная направляющая база — база, лишающая заготовку или изделие четырех степеней свободы: перемещения вдоль двух координатных осей и поворотов вокруг этих осей (см. рис. 3.6, г).
Двойная опорная база — база, лишающая заготовку или изделие двух степеней свободы: перемещения вдоль двух координатных осей (см. рис. 3.6, д).
Скрытая база — база заготовки или изделия в виде воображаемой плоскости, оси, точки (см. рис. 3.6, е)
Явная база – база заготовки или изделия в виде реальной поверхности, разме- точной риски или точки пересечения рисок (см. рис.3.6, а).
Опорная точка — точка, символизирующая одну из связей заготовки или изде- лия с избранной с системой координат (см. рис. 3.6, е).
Примечания.1. Для обеспечения неподвижности заготовки или изделия в избранной системе координат на них необходимо наложить шесть двусторонних геометрических связей, для создания которых необходим комплект баз.
2. Если в соответствии со служебным назначением изделие должно иметь определенное число степеней свободы, то соответствующее число связей снимается.
Схема базирования — схема расположения опорных точек на базах заготовки или изделия (рис. 3.7).
Примечания. 1. Все опорные точки на схеме базирования означаются условными знаками и порядковыми номерами, начиная с базы, на которой располагается наибольшее количество опорных точек.
2. При наложении в какой-либо проекции опорной точки на другую, изображается одна точка и около нее проставляются номера совмещенных точек.
3. Число проекций заготовки или изделия на схеме базирования должно быть достаточным для представления о размещении опорных точек.
а – спереди и сбоку; б – в плане; в – схема базирования призматической детали с комплектом баз
Рисунок 3.7 – Условные обозначения опорных точек на видах
Погрешность базирования — отклонение фактически достигнутого положения заготовки или изделия при базировании от требуемого. Однако необходимо особо подчеркнуть, что погрешность базирования имеет место только при работе на настроенных станках, т. е. когда партия заготовок обрабатывается при неизменном (заранее установленном) относительном положении инструмента и заготовок.